## **APPENDIX A**

## SUPPLEMENTAL DATA COLLECTION REPORT

# SUPPLEMENTAL DATA COLLECTION REPORT

## KENILWORTH PARK LANDFILL NATIONAL CAPITAL PARKS - EAST N.E. WASHINGTON, DC

## **FEBRUARY 2010**

Prepared by: The Johnson Company, Inc.



**Revision Number: 0 Revision Date:** 02/08/10 Page i

## **EXECUTIVE SUMMARY**

The Johnson Company collected supplemental soil vapor, indoor air, and surface soil samples and assessed existing topographic data to supplement previous Remedial Investigations (RIs) in support of a Feasibility Study (FS) for the Kenilworth Park Landfill (Site) in Northeast Washington, District of Columbia. The work was performed following the procedures set forth in the October 2008 Supplemental Data Collection Field Sampling Plan (FSP), Quality Assurance Project Plan (QAPP), and Health and Safety Plan (HASP) written for the Site. The purpose of the supplemental data collection was to address data gaps remaining after the completion of separate RIs for the two areas which comprise the Site, Kenilworth Park Landfill North (KPN) and Kenilworth Park Landfill South (KPS). The data gaps addressed were: an assessment of the potential for explosive risks from landfill gas during implementation of the remedial action as well as to current and future on-Site and adjacent off-Site structures, an evaluation of the bioavailability of contaminants previously detected in surface soils, and an assessment of the usability of available topographic data.

Data collection included installation of soil vapor probes, indoor air sampling, surface soil sampling, and an assessment of topographic data. Nine deep and 18 shallow soil vapor probes were installed. The probes were then developed; field screened for volatile organic compounds (VOCs), methane, carbon dioxide, and oxygen; and sampled using Summa canisters. One indoor air sample was collected in a Summa canister from inside the Kenilworth-Parkside Community Center at the location most likely to have been impacted by methane soil vapor intrusion. The soil vapor and indoor air samples were analyzed for methane to assess explosive risk. In addition to the soil vapor and indoor air samples, 24 surface soil samples were collected and analyzed for pH and total organic carbon (TOC) to assess bioavailability of Comounds of Potential Ecological Concern (COPECs) identified in the RI Baseline Ecological Risk Assessment (BERA).

At KPN, methane was detected in soil vapor samples from three of fifteen probes, two deep and one shallow. However, no methane was detected inside the Kenilworth-Parkside Community Center. Two of the four deep probes, which were located along the Site boundary, contained methane, but at concentrations at least two orders of magnitude below the lower explosive limit (LEL). No methane was detected in the other two deep probes. In one shallow probe, methane was detected at 81% of the LEL in the laboratory sample, and over the LEL during field screening from one shallow probe located northwest of Kenilworth-Parkside Community Center. No methane was detected in samples from any of the other ten shallow soil vapor samples collected at KPN.

At KPS, methane was detected in soil vapor samples collected from five of 12 probes. Methane was detected below the LEL in laboratory samples and above the LEL in field screening in two shallow probes, and not detected at all in a third shallow probe, in the interior of KPS east of Deane Avenue. One shallow and one deep probe located northeast of the fence separating KPS from the Thomas Elementary School yard contained methane at 180% and 280% of the LEL, respectfully. However, no methane was detected in subsequent samples collected from four

**Revision Number: 0 Revision Date:** 02/08/10 Page ii

additional probes installed on the school yard (but on NPS property). Two other additional sample probes were installed along the KPS southern boundary with the DC Transfer Station: one had no detected methane and the other had methane at 4.6% of the LEL.

TOC was detected between 3,370 and 50,100 mg/kg at KPN, and between 2,050 and 175,000 mg/kg at KPS. The pH of surface soil samples at KPN and KPS ranged from 6.4 to 7.6. These ranges of TOC and pH have the effect of reducing bioavailability and toxicity of metals and organic contaminants to ecological receptors. The currently available topographic data was determined to be usable for the purposes of the FS.

Field and laboratory quality control measures were assessed in a data usability assessment to determine if the data were suitable to address the objectives of the data collection effort. It was determined that all data generated during field screening and by the laboratory were usable for the purposes of the investigation. Based on the completeness of the data collected, the dataset is usable to evaluate the objectives of the investigation.

**Revision Number: 0 Revision Date:** 02/08/10 Page iii

## **TABLE OF CONTENTS**

|               | DUCTION                                 |     |
|---------------|-----------------------------------------|-----|
|               | OJECT OVERVIEW AND BACKGROUND           |     |
| <b>1.2</b> Pu | RPOSE OF SUPPLEMENTAL DATA COLLECTION   | . 2 |
| 1.2.1         | Landfill Gas Survey                     | . 2 |
| 1.2.2         | Surface Soil pH and TOC Assessment      | . 3 |
| 1.2.3         | Topographic Survey Assessment           | . 3 |
| 1.3 SC        | OPE OF REPORT                           | .4  |
|               | ODS                                     |     |
| 2.1 FI        | ELD SAMPLING OVERVIEW AND TIMELINE      | . 5 |
| 2.2 FI        | ELD METHODS                             | . 5 |
| 2.2.1         | Soil Vapor Sampling                     | . 5 |
| 2.2.2         | Indoor Air Sampling                     | . 8 |
| 2.2.3         | Surface Soil Sampling                   | . 9 |
| 2.2.4         | GPS Identification of Field Locations   | 10  |
| 2.2.5         | Topographic Survey Assessment           | 10  |
| 2.2.6         | Decontamination Methods                 | 10  |
| 2.2.7         | Investigation-Derived Waste             | 10  |
| 3.0 RESUL     | TS                                      | 12  |
| 3.1 So        | IL VAPOR SAMPLING RESULTS               | 12  |
| 3.1.1         | Field Screening Results                 | 12  |
| 3.1.2         | Analytical Results                      | 12  |
| 3.2 IN        | DOOR AIR SAMPLING RESULTS               | 14  |
| 3.3 Su        | RFACE SOIL SAMPLING RESULTS             | 14  |
| 3.3.1         | ТОС                                     | 14  |
| 3.3.2         | <i>pH</i>                               | 14  |
| <b>3.4</b> To | POGRAPHIC SURVEY ASSESSMENT RESULTS     | 15  |
|               | W SOIL RESULTS                          |     |
| 4.0 DATA U    | JSABILITY ASSESSMENT                    | 17  |
| 4.1 Fi        | ELD QUALITY CONTROL                     | 17  |
| 4.1.1         | Calibration of Field Instruments        | 17  |
| 4.1.2         | Summa Canister Vacuum Pressures         |     |
| 4.1.3         | Adherence to Field Sampling SOPs        | 18  |
| 4.1.4         | Field Duplicate Collection and Analysis | 18  |
| 4.1.5         | Field Sampling Completeness             | 18  |
|               | BORATORY QUALITY CONTROL                |     |
| 4.2.1         | Soil Vapor and Indoor Air Methane       |     |
| 4.2.2         | Soil TOC                                | 20  |
| 4.2.3         | Soil pH                                 |     |
| 4.2.4         | Soil IDW TCLP Metals and Mercury        |     |
| 4.2.5         | Data Usability Conclusions              |     |
| 5.0 REFER     | ENCES                                   | 26  |

## LIST OF TABLES

- Table 2-1Field Sampling Timeline
- Table 2-2Summary of Soil Vapor Probe Construction and Samples
- Table 2-3Surface Soil Samples
- Table 3-1Soil Vapor Screening Results
- Table 3-2Soil Vapor Methane Analytical Results
- Table 3-3Summary of Surface Soil Analyses
- Table 3-4
   Investigation-Derived Waste Analytical Results
- Table 4-1Summa Canister Vacuum Pressures
- Table 4-2Soil Vapor Field Duplicate Analyses
- Table 4-3Surface Soil Field Duplicate Analyses

## LIST OF FIGURES

- Figure 1-1 Site Location Map Kenilworth Park Landfill North and Kenilworth Park Landfill South
- Figure 1-2 Overall Site Plan
- Figure 2-1(a) Soil Vapor Sampling Locations Kenilworth Park Landfill North
- Figure 2-1(b) Soil Vapor Sampling Locations Kenilworth Park Landfill South
- Figure 2-2(a) Surface Soil Sampling Locations Kenilworth Park Landfill North
- Figure 2-2(b) Surface Soil Sampling Locations Kenilworth Park Landfill South
- Figure 3-1(a) Soil Vapor Methane Results Kenilworth Park Landfill North
- Figure 3-1(b) Soil Vapor Laboratory Results Methane Kenilworth Park Landfill South
- Figure 3-2(a) Surface Soil pH and TOC Results Kenilworth Park Landfill North
- Figure 3-2(b) Surface Soil pH and TOC Results Kenilworth Park Landfill South
- Figure 3-3(a) Topographic Map Kenilworth Park Landfill North
- Figure 3-3(b) Topographic Map Kenilworth Park Landfill South

## LIST OF APPENDICES

- Appendix 1 Daily Logs and Field Notes (October 2008 and March 2009)
- Appendix 2 Soil Vapor Probe Construction and Sampling Logs (October 2008 and March 2009)
- Appendix 3 Indoor Air Pre-Sampling Survey
- Appendix 4 Surface Soil Sampling Logs
- Appendix 5 Soil Vapor (October 2008 and March 2009), Indoor Air, and Investigation-Derived Waste Laboratory Reports
- Appendix 6 Surface Soil Laboratory Reports
- Appendix 7 Laboratory TOC and pH SOPs
- Appendix 8 Deviation Forms

## ABBREVIATIONS AND ACRONYMS

| " Hg<br>bgs | Inches of Mercury<br>Below Ground Surface     |
|-------------|-----------------------------------------------|
| BERA        | Baseline Ecological Risk Assessment           |
| COPEC       | Compound of Potential Ecological Concern      |
| District    | District of Columbia                          |
| °C          | Degrees Celsius                               |
| EPA         | United States Environmental Protection Agency |
| FS          | Feasibility Study                             |
| FSP         | Field Sampling Plan                           |
| GPS         | Global Positioning System                     |
| IDW         | Investigation-Derived Waste                   |
| JCO         | The Johnson Company, Inc.                     |
| KPN         | Kenilworth Park Landfill North                |
| KPS         | Kenilworth Park Landfill South                |
| L           | Liter                                         |
| LEL         | Lower Explosive Limit                         |
| LFG         | Landfill Gas                                  |
| LGS         | Landfill Gas Survey                           |
| Mitkem      | Mitkem Laboratories                           |
| MSW         | Municipal Solid Waste                         |
| NPS         | National Park Service                         |
| PPE         | Personal Protective Equipment                 |
| QAPP        | Quality Assurance Project Plan                |
| QC          | Quality Control                               |
| RA          | Remedial Action                               |
| RI          | Remedial Investigation                        |
| RI/FS       | Remedial Investigation/Feasibility Study      |
| RPD         | Relative Percent Difference                   |
| SAP         | Sampling and Analysis Plan                    |
| SOP         | Standard Operating Procedure                  |
| Spectrum    | Spectrum Analytical, Inc.                     |
| SVOC        | Semi-Volatile Organic Compound                |
| TCLP        | Toxicity Characteristic Leaching Procedure    |
| TOC         | Total Organic Carbon                          |
| VOC         | Volatile Organic Compound                     |
|             |                                               |

**Revision Number: 0 Revision Date:** 02/08/10 Page 1

#### **1.0 INTRODUCTION**

#### 1.1 PROJECT OVERVIEW AND BACKGROUND

This report presents the results of additional data collected by The Johnson Company on behalf of the National Park Service (NPS) at the Kenilworth Park Landfill Site (Site) in Northeast Washington, District of Columbia (the District) during October 2008 (Figures 1-1 and 1-2). The data were collected to supplement the results of previous Remedial Investigations (RIs) in support of a Site Feasibility Study (FS). The work was performed following the procedures set forth in the October 2008 Supplemental Data Collection Field Sampling Plan (FSP) (JCO, 2008a), Quality Assurance Project Plan (QAPP) (JCO, 2008b), and Health and Safety Plan (HASP) (JCO, 2008c).

The Site was the subject of two RIs completed in 2007 and 2008. The Site was divided into two sections for these investigations: Kenilworth Park Landfill North (KPN) and Kenilworth Park Landfill South (KPS) (Figures 1-1 and 1-2). KPN was defined as the area bounded to the south by Watts Branch, to the west by the Anacostia River, to the north by the Kenilworth Aquatic Gardens, and to east by Anacostia Avenue. KPS was defined as the area south of Watts Branch, west of Hayes Street, and north of the Thomas Elementary School and the District of Columbia Transfer Station. This report presents data from both areas of the Site, and continues to refer to them as KPN and KPS. The RIs included a review of the area geology and laboratory analyses of sediment, surface soil, subsurface soil, and groundwater samples, as well as aquifer testing, electromagnetic landfill delineation, and human health and ecological risk assessments. However, the RIs identified remaining data gaps which are the subject of this report (see Section 1.2).

For a complete discussion of Site background and results of previous investigations, refer to the RI for KPS (E&E, 2008) and the RI for KPN (E&E, 2007).

**Revision Number: 0 Revision Date:** 02/08/10 Page 2

#### **1.2 PURPOSE OF SUPPLEMENTAL DATA COLLECTION**

Collection of supplemental data was undertaken to provide supplemental site information after the completion of the RIs for KPN and KPS. The data gaps identified in the RI and addressed in this report fall into the following categories:

- Landfill gas survey (LGS)
- Surface soil pH and total organic carbon (TOC) assessment
- Topographic survey assessment

The landfill gas survey was completed to assess the potential for explosive environments or human health impacts related to on-Site buildings or utility construction or off-Site properties. The surface soil pH and TOC assessment was performed to evaluate the bio-availability of contaminants to ecological receptors. The topographic survey assessment was completed to determine if and where the ground surface may have been altered since the previous topographic survey was completed (the ground surface topography is relevant for evaluating remedial alternatives during the FS). A more detailed description of the purpose of the data collection is provided in the following sections.

#### 1.2.1 Landfill Gas Survey

The purpose of the LGS was to determine if methane generation in the landfill had created concentrations in the vadose zone and/or indoor air (in existing structures) which could pose unacceptable risks during implementation of a remedial action or to occupants of current and future on-Site and adjacent off-Site structures. Methane concentrations at or above the lower explosive limit (LEL) were reported during the KPN and KPS RIs beneath the soil cover over the municipal solid waste (MSW) historically disposed in the two areas (E&E, 2007; E&E, 2008). Although a uniformly low permeability landfill cap (e.g., clay cap) would restrict upward migration of landfill gases into the overlying soils, the soil cover at KPN and KPS is made of heterogeneous mixed material, and methane concentrations in the shallow soils overlying the landfills and in the existing Kenilworth-Parkside Community Center were not investigated as part of the RIs. Since it was assumed that significant concentrations of methane still existed

beneath the landfill caps but the extent of its migration into shallow soil, indoor air, and/or off-Site was unknown, it was necessary to further investigate the following:

- methane concentrations in the shallow soils overlying the landfills;
- potential for migration of methane from the landfill towards adjacent existing and possible future structures; and
- methane concentrations in the indoor air in the Kenilworth-Parkside Community Center.

U.S. Environmental Protection Agency (EPA) guidance for evaluating landfill gas sets forth further evaluative steps if methane exists above the LEL (approximately 5% methane by volume) in soil vapor at a landfill property boundary or above 25% of the LEL within structures (EPA, 2005).

## 1.2.2 Surface Soil pH and TOC Assessment

The KPN Baseline Ecological Risk Assessment (BERA) identified 11 metals, five pesticides, and 13 PAHs as compounds of potential ecological concern (COPECs) in surface soil at KPN (E&E, 2007). The KPS BERA identified 11 metals and 13 PAHs as COPECs in surface soil at KPS (E&E, 2008). However, as stated in both BERAs, all contaminants were assumed to be 100% bioavailable (E&E, 2007; E&E, 2008), the validity of which depends on ambient soil chemistry. The purpose of the surface soil pH and TOC assessment was to refine the conclusions of the respective BERAs based on the bioavailability of COPECs detected in soil during the RIs.

## 1.2.3 <u>Topographic Survey Assessment</u>

An accurate topographic survey depicting current Site conditions is necessary to support the development of remedial alternatives during the FS, which may include, among the remedial alternatives assessed, erosion and sedimentation control, stormwater management, and surface restoration for recreational use. Topographic contours from the year 2000 are available at onefoot intervals covering the western and central portions of KPN and all of KPS. Topographic contours are not available for areas of KPN from approximately the running track east to Anacostia Avenue, including the vicinity of Kenilworth-Parkside Community Center. The purpose of the topographic survey assessment was to evaluate if the currently available

**Revision Number: 0 Revision Date:** 02/08/10 Page 4

topographic data were usable for the purposes of the FS and if a supplemental topographic survey needed to be performed.

## **1.3** SCOPE OF REPORT

The scope of this report is to document the following aspects of the LGS, soil pH and TOC assessment, and topographic survey assessment which constitute the supplemental data collection effort:

- methods of data collection;
- field and analytical results; and
- data usability assessment.

#### 2.0 METHODS

#### 2.1 FIELD SAMPLING OVERVIEW AND TIMELINE

Field sampling took place from October 14 through 17, 2008 and on March 20 and 21, 2009. Sampling and associated field activities consisted of the following: collection of surface soil samples, installation and development of soil vapor probes, landfill gas (LFG) field screening, LFG sampling, indoor air sampling, Global Positioning System (GPS) location of sampling points, investigation-derived waste (IDW) sampling, and the topographic survey assessment. The Johnson Company performed all field activities except the soil borings for the installation of deep soil vapor probes, which were completed by Vironex of Bowie, Maryland under The Johnson Company supervision. Table 2-1 summarizes sampling activities by date. Daily logs and field notes are included as Appendix 1.

#### 2.2 FIELD METHODS

#### 2.2.1 Soil Vapor Sampling

Twenty-seven soil vapor probes were installed for the collection of LFG samples (see Table 2-2 for summary and Appendix 2 for details). Soil probes at twenty-one of these locations were constructed in October 2008 and the final six were constructed in March 2009. Eleven shallow and four deep probes were installed in KPN (Figure 2-1(a)). Seven shallow and five deep probes were installed in KPS (Figure 2-1(b)).

Soil borings were advanced at each sampling location prior to installing the soil vapor probe to determine if waste is present at the proposed sampling depth. Borings for all shallow probes except KPN-JCO-SV-11S and KPN-JCO-12S were advanced by hand-auger to approximately two feet below ground surface (bgs) in the landfill cap material which lies above landfill waste material. The bottoms of the 0.5 ft shallow probe screens were placed at the bottom of the holes at approximately two feet bgs. If waste material was encountered in a shallow sampling location borehole, the original borehole was closed and another borehole augured a minimum of 10 ft from the original hole and the screen installed at a depth of approximately the mid-depth between the ground surface and the previously encountered top of

waste. Waste material was encountered in the original boreholes for KPN-JCO-SV-02S and KPN-JCO-SV-08S which were therefore subsequently installed in different boreholes at depths shallower than two feet bgs.

All deep soil vapor probe borings and shallow probes KPN-JCO-SV-10S and KPN-JCO-11S were advanced using direct-push methods with a Geoprobe® by Vironex of Bowie, Maryland under The Johnson Company supervision. All other borings were advanced with a hand auger. All deep probe locations were cleared by the Miss Utility, a utility locating service before beginning the investigation during both the October 2008 and the March 2009 site work. The deep borings were advanced to target depths specified in the FSP that were selected based on a review of stratigraphy data from previous investigations. Material recovery during coring activities was monitored for the presence of landfill waste material. If waste was present within the target depth of the boring, the deep probe was installed within the top two feet of the waste material. If the deep soil vapor probe did not encounter waste material, the screen was installed at a depth equivalent to two feet into waste material based on measured waste depths in the nearest soil boring (from this or historical investigations) that did encounter waste material.

Soil vapor probes were constructed of a six-inch long stainless steel screen of half-inch diameter. The screens were connected to a Teflon®-lined sampling tube extending from the top of the screen to above the ground surface. After the screen was placed at the bottom of the borehole at the desired sampling depth, the annular space was filled with filter sand to above the top of the screen. At least 0.16 feet of hydrated bentonite was placed above the sand to provide a seal. The remainder of the borehole was filled to ground surface with native soil from the boring. After sampling, the shallow probes were removed and a metal road box lid was placed on top of the deep probes to facilitate finding the deep probes in the future for re-use if desired.

Of the 28 originally planned soil vapor probes identified in the FSP, 21 were completed as planned. Two originally planned probe locations (KPS-JCO-SV-04, and -05) along the boundary between KPS and the DC Transfer Station could not be installed because the

Geoprobe<sup>®</sup> could not access the area as a result of the steep grade and dense vegetation. The previously planned locations KPS-JCO-SV-04S and KPS-JCO-SV-05S were installed during a second mobilization in March 2009 and were renamed KPS-JCO-SV-101S and KPS-JCO-SV-102S, respectively. Two of the proposed shallow probes (KPN-JCO-SV-12S and KPN-JCO-SV-13S) were not installed for several reasons. These two proposed locations were outside the landfill boundary and no cap soils were evident during the deep soil vapor probe installations at these locations (as was observed elsewhere). The shallow soil observed was very permeable sand and gravel which would allow any methane to vent readily to the atmosphere, therefore it was decided not to install the shallow probes at the KPN-JCO-SV-12S and KPN-JCO-SV-13S locations. The most likely potential receptors to migration of methane in this direction would be the utility trenches in Anacostia Avenue and/or basements of residential buildings beyond Anacostia Avenue. At these locations (KPN-JCO-SV-12 and KPn-JCO-SV-13) the deeper probes were judged to be adequate to assess the potential for off-site migration of methane towards these receptors. The proposed shallow vapor probe KPS-JCO-SV-06S was not installed adjacent to the deep probe at that location because landfill waste material was encountered at the relatively shallow depth of four (4) feet bgs. The deep probe was therefore installed at a relatively shallow depth itself, which would have made data from a shallow vapor probe redundant. Deep vapor probe KPS-JCO-SV-07D was not installed because soil density precluded hand-auguring beyond the depth of shallow probe installation and the location could not be accessed with the Geoprobe®. One soil vapor probe (KPS-JCO-SV-08S) was added to the originally planned installations and sampled to provide additional data on the boundary between KPS and the Thomas Elementary School during the October 2008 sample event. Also during the March 2009 event four additional deep soil vapor probes were installed behind the Thomas Elementary School on NPS property. Also in March, the two shallow points were installed along the boundary between KPS and the DC Transfer Station.

After installation, the probes were developed and field screened for the presence of volatile organic compounds (VOCs) and LFG. The probe sample tubing was attached to the intake of a Landtec GEM 2000 landfill gas meter and the probe purged of at least three times the

calculated total volume of the tubing, riser, screen, and filter sand void space. At the same time, the Landtec GEM 2000 and a MiniRAE 3000 10.6 electron volt (eV) photo-ionization detector (PID) were used to field screen the extracted gas for methane, carbon dioxide, oxygen, %LEL, and VOCs. After field screening, the probes were left a minimum of 12 hours to equilibrate with subsurface conditions prior to sampling the following day.

Twenty-one soil vapor samples were collected on October 17 in 3.2 liter Summa canisters attached to the soil vapor probe sampling tube and six soil vapor samples were collected during the March 2009 sample event from the six additional soil vapor probes installed during the second mobilization (see Appendix 2 sampling logs). The samples were collected over a period of approximately 30 minutes through a flow controlling regulator. Four field duplicates (two from KPN and two from KPS) were also collected simultaneously with their associated samples by installing a "Y" connector to the sample tubing such that both Summa canisters were attached to the same soil vapor probe.

The Johnson Company transported the samples under chain of custody from the Site to Spectrum Analytical, Inc. of Agawam, MA, from which they were sent to Mitkem Laboratories of Warwick, RI (a division of Spectrum Analytical) where they were analyzed for methane by EPA Method 3C.

## 2.2.2 Indoor Air Sampling

One indoor air sample and field duplicate (KPN-JCO-IA-01 and KPN-JCO-IA-01-DUP) were also collected inside the Kenilworth-Parkside Community Center during the October 2008 mobilization. An indoor air pre-sampling survey was completed prior to the initiation of sampling to identify building conditions such as the ventilation system, windows, heating system, underground utilities, and ambient conditions that could potentially affect the results of indoor air sampling (Appendix 3). The canisters were placed above the floor in the boiler room, which was identified as the location in the building most likely to be impacted by methane from subsurface soil vapor because of numerous utility conduits penetrating the floor slab, the

presence of cracks in the slab, and a floor drain, all of which could provide a preferential pathway for soil vapor intrusion. The sample and duplicate were collected simultaneously in sixliter Summa canisters over an 11.5 hour overnight period from October 16 to 17, 2008. The Johnson Company transported the samples under chain of custody with the soil vapor sample canisters from the Site to Spectrum Analytical, from which they were sent to Mitkem Laboratories where they were analyzed for methane by EPA Method 3C.

#### 2.2.3 Surface Soil Sampling

Twenty-four surface soil samples and two field duplicates were collected for the analysis of pH and TOC during the October 2008 mobilization (Table 2-3; Appendix 4). Thirteen samples and one duplicate were collected from KPN (Figure 2-2(a)) and 11 samples and one duplicate were collected from KPS (Figure 2-2(b)).

Surface soil samples were collected following removal of vegetation by cutting or scraping it away at each sample location. The vegetation was set aside for later return to the top of the sample hole. A decontaminated hand auger was used to remove soil to a depth of approximately six inches. Using disposable nitrile gloves, sufficient soil for the analyses from the 0 to 0.5 foot interval was placed into a laboratory supplied pre-cleaned 4 oz amber glass jar with teflon lined cap. Following sample collection, the sample hole was backfilled with the remaining soils and where possible the surface vegetation replaced.

The soil samples were shipped on ice under chain of custody to Spectrum Analytical for analysis for TOC by EPA Method 9060 and pH by EPA Method 9045C.

The analysis of surface soil samples at Spectrum Analytical and the analysis of TOC by EPA Method 9060 were deviations from the QAPP. The QAPP specified that the samples be analyzed at Mitkem Laboratories, and that TOC be analyzed by the Lloyd Kahn Method. However, the TOC analyses performed by Spectrum using EPA Method 9060 are considered valid resulting in data suitable for the purposes of this investigation. A complete discussion of this deviation is included in Section 4.2.1. A Deviation Form is included in Appendix 8.

## 2.2.4 GPS Identification of Field Locations

The geographic locations of the soil vapor probe and surface soil sampling locations were identified with a Trimble GPS to 0.1 meter accuracy. In addition, the locations of Site features potentially pertinent to the FS such as catch basins, sewer manholes, sewer line markers, and the extent of fill observed around the recent construction of a track and playing field at KPN were also identified with the Trimble GPS. All measured sampling locations and select site physical features are plotted on Figures 2-1(a,b) and 2-2 (a,b).

## 2.2.5 <u>Topographic Survey Assessment</u>

Currently available topographic data was assessed to evaluate its usability for the purposes of the FS by comparing topographic maps with actual site conditions. Specifically, the current topographic maps were scrutinized while walking the Site to determine if they reasonably depicted the current land surface, areas of potential ponding, surface water runoff pathways, and any other Site features potentially pertinent to an evaluation of remedial alternatives for the FS and their associated cost estimates.

## 2.2.6 Decontamination Methods

Surface soil sampling equipment and hand augers were decontaminated with Alconox, distilled water, and paper towels between samples and probe installations. The Geoprobe® unit used pre-cleaned outer barrels and dedicated soil core liners at each location. Decontamination was performed such that liquid investigation derived waste (IDW) was absorbed by the paper towels without generating free liquid.

## 2.2.7 Investigation-Derived Waste

IDW included soils and landfill waste material from soil vapor probe borings, decontamination paper towels, and personal protective equipment (PPE). Plastic, paper, and PPE

IDW were put into plastic trash bags and placed into a dumpster for disposal at a solid waste landfill.

Approximately 2 cubic feet of IDW soils and landfill waste material were generated during soil vapor probe installation. The IDW soils were contained in a five-gallon DOT rated pail. One composite soil sample (COMPOSITEKPN-1 – mislabeled "COMPOSITEMPN-1" by the laboratory) was collected from the pail on October 16, 2008 after completing the soil vapor probe installations. The Johnson Company transported the sample on ice under chain of custody to Spectrum Analytical from which it was sent to Mitkem Laboratories for Toxicity Characteristic Leaching Procedure (TCLP) analysis of metals and mercury by EPA Methods 1311/6010 and 1311/7470, respectively. The pail was stored in a secure location at NPS headquarters while the sample was being analyzed and the required disposal method was being determined. Based on the results of the TCLP analyses, the soil IDW was determined to be non-hazardous and disposed of in a dumpster as solid waste (see Section 3.5).

#### 3.0 RESULTS

#### 3.1 SOIL VAPOR SAMPLING RESULTS

#### 3.1.1 Field Screening Results

Soil vapor field screening results for VOCs, methane, carbon dioxide, oxygen, and %LEL are presented in Table 3-1. At KPN, explosive gas was not detected by the field screening gas meter at any measured locations except in shallow probe KPN-JCO-SV-09S where it was detected at over 100% of the LEL. KPN-JCO-SV-09S is located approximately 350 feet northwest of the Kenilworth-Parkside Community Center at 1.5-2 feet bgs (Figure 3-1(a)). At KPS, explosive gas was detected over 100% of the LEL in three of six shallow probes (KPS-JCO-SV-01S, KPS-JCO-SV-03s, and KPS-JCO-SV-07S) and one of the two deep probes (KPS-JCO-SV-06D). At KPS, explosive gas was detected above the LEL at two of the six shallow locations (KPS-JCO-SV-01S and -03S). The four deep soil gas probes (KPS-JCO-SV-103D through -106D) installed behind Thomas Elementary School had no measureable detections of explosive gases during the March 2009 sampling event.

## 3.1.2 Analytical Results

Laboratory soil vapor methane concentrations are presented in Table 3-2, and are shown on Figures 3-1(a) and 3-1(b). Complete laboratory reports for the October 2008 and March 2009 sample events are included in Appendix 5.

Methane was detected by the laboratory in Summa canister samples from three of fifteen probes at KPN (KPN-JCO-SV-09S, KPN-JCO-SV-10D, and KPN-JCO-SV-12D). Methane concentrations in deep probes KPN-JCO-SV-10D and KPN-JCO-SV-12D located along the landfill boundary with Anacostia Avenue were 87 parts per million by volume (ppmv) (0.2 %LEL) and 870 ppmv (1.7 %LEL), respectively. These concentrations are at least two orders of magnitude lower than the EPA guidance value of 100% of the LEL (approximately 50,000 ppmv) measured at a landfill property boundary. The maximum laboratory reported concentration detected at KPN was 40,390 ppmv (81% of the LEL) at KPN-JCO-SV-09S laboratory duplicate (37,000 ppmv and 39,000 ppmv in the parent sample and field duplicate,

respectively). While the laboratory-reported values at KPN-JCO-SV-09S were lower than the field screening result at that location (435,000 ppmv and >100%LEL), both sets of results identify KPN-JCO-SV-09S as the only location at KPN that approaches or exceeds the LEL. Methane was not detected in shallow soil vapor in the western portion of KPN or in the other four probes located on the landfill boundary along Anacostia Avenue.

Methane was detected by the laboratory in Summa canisters from five of twelve probes at KPS (KPS-JCO-SV-01S, KPS-JCO-SV-03S, KPS-JCO-SV-06D, KPS-JCO-SV-07S, and KPS-JCO-SV-102S). Methane was reported by the laboratory in shallow soil vapor in the interior portions of KPS at concentrations of 23,000 ppmv (46% of the LEL) at KPS-JCO-SV-01S and 1,400 ppmv (2.8% of the LEL) at KPS-JCO-SV-03S, although none was reported in shallow soil vapor adjacent to the former public restroom (KPS-JCO-SV-02S). These reported analytical results were lower than the respective field screening results from the same locations, which both exceeded the LEL. Methane was reported by the laboratory above the LEL in two probes located northwest of the fence separating the Thomas Elementary School yard and KPS at concentrations of 140,000 ppmv (280% of the LEL) at KPS-JCO-SV-06D and 89,000 ppmv (178% of the LEL) at KPS-JCO-SV-07S (90,840 ppmv in the field duplicate), although it was not detected in shallow soil vapor near the northeast corner of the Thomas Elementary School property (KPS-JCO-SV-08S). In response to the detections at KPS-JCO-SV-06D and 07S, four additional vapor probes were installed in the play fields behind Thomas Elementary School during the March 2009 sampling event. None of these locations (KPS-JCO-SV-103D through 106D), which are all located on NPS property, had reportable detections of methane by the laboratory. Additional soil vapor samples were also collected during the March 2009 sampling event from two shallow locations along the KPS southern boundary with the DC Transfer Station. No methane was detected at one location (KPS-JCO-SV-101S) and 2,300 ppmV (4.6% of the LEL) was reported at the other location (KPS-JCO-SV-102S).

Field screening and analytical results generally agreed in identifying probes at which methane was present in soil vapor at significant concentrations, or where methane was not

detected or detected at very low concentrations (e.g., <2% LEL). The only exception to this correlation was at KPS-JCO-SV-03S, in which methane was measured with field screening at 80,000 ppmv whereas the laboratory only reported 1,400 ppmv. This difference may have been influenced by the following factors: inclusion of hydrocarbons other than methane in the measurement of %LEL in the Landtec GEM 2000 field instrument (Landtec, 2007); different ambient conditions on the day of field screening and the day of Summa canister sample collection, such as soil temperature, air temperature, and barometric pressure; and a decrease in methane concentration influenced by extraction of soil vapor during probe development which may not have returned to pre-development equilibrium concentrations before collecting Summa canister samples the following day.

## 3.2 INDOOR AIR SAMPLING RESULTS

Methane was not detected in the indoor air sample collected from the Kenilworth-Parkside Community Center (KPN-JCO-IA-01) or its field duplicate (KPN-JCO-IA-01-DUP). Indoor air laboratory reports are included in Appendix 5.

## 3.3 SURFACE SOIL SAMPLING RESULTS

Results of surface soil pH and TOC analyses are presented in Table 3-3 and shown on Figures 3-2(a) and 3-2(b). Complete laboratory reports are included in Appendix 6.

## 3.3.1 <u>TOC</u>

TOC was detected between 3,370 mg/kg (0.3%) and 50,100 mg/kg (5.0%) at KPN. TOC was detected between 2,050 mg/kg (0.2%) and 175,000 mg/kg (17.5%) at KPS. Where TOC exceeds 1%, bioavailability and toxicity of metals and organic contaminants will be reduced. The implications of this on the conclusions from the ecological risk assessment are discussed in more detail in the FS.

## 3.3.2 <u>pH</u>

The pH of surface soil samples ranged from 6.44 to 7.44 at KPN and from 6.77 to 7.56 at KPS, indicating that the soils are well buffered, which has the effect of reducing bioavailability

and toxicity of metals to ecological receptors. The implications of this on the conclusions from the ecological risk assessment are discussed in more detail in the FS.

#### 3.4 TOPOGRAPHIC SURVEY ASSESSMENT RESULTS

Currently available topographic data was determined to be usable for the purposes of the FS. Topographic contours for the Site from the year 2000 are available at one-foot intervals covering the western and central portions of KPN (Figure 3-3(a)) and all of KPS (Figure 3-3(b). During the PDI field work, the majority of KPN and KPS were traversed and distinct topographic features were noted to be reflected by the topographic mapping in their current state. In addition, the location of several mapped landmarks was determined with a GPS during the field work. The coordinates determined in the field matched up well with the mapping assuring the overall accuracy of the scale and orientation in the reflection of current conditions. The area surrounding the Community Center is not depicted on the 2000 topographic mapping. This area is highly developed with walkways, a football field and track, tennis courts, swimming pool, and buildings. It is likely that any FS alternative considered for this area will preserve these surface features making topographic information less important for the purposes of the FS. If, during the development of the FS, a remedial alternative is developed that would significantly alter the ground surface, a topographic survey would be required during the remedial design. Topographic data with one-meter resolution are available for the entirety of KPN and KPS from the District's Geographic Information System (DC GIS) (Figures 1-2 through 3-2).

#### 3.5 IDW SOIL RESULTS

The results from IDW soil sample COMPOSITEKPN-1 are shown in Table 3-4. The soil IDW laboratory report is included in Appendix 5.

All metals and mercury results were below their respective toxicity thresholds for definition of a hazardous waste per 40 Code of Federal Regulations (CFR) 261.24. Results of all historic soil analyses for non-metal contaminants documented in the RIs (TCLP pesticides, herbicides, VOCs, and semi-volatile organic compounds (SVOCs); polychlorinated biphenyls (PCBs); and total pesticides, VOCs, and SVOCs) were previously determined to be below

**Revision Number: 0 Revision Date:** 02/08/10 Page 16

concentrations which could cause soil IDW to be considered hazardous waste (JCO, 2008(a)). The 5-gallon bucket of soil IDW was disposed of in a dumpster as solid waste upon receipt of the results which documented that it was not hazardous waste.

#### 4.0 DATA USABILITY ASSESSMENT

#### 4.1 FIELD QUALITY CONTROL

Field quality control (QC) measures used during the investigation consisted of the following: daily calibration of the PID and landfill gas meter used in field screening, adherence to field instrument and sampling SOPs, recording pre- and post-sampling Summa canister vacuum pressures, and collection of field duplicates for submission to the analytical laboratory. The number and locations of samples collected during field activities were also compared to the sampling described in the FSP to evaluate field sampling completeness.

## 4.1.1 <u>Calibration of Field Instruments</u> PID

The MiniRAE 3000 10.6 e+V lamp PID was calibrated prior to each day's use with zero air (0 parts per million (ppm)) and 100 ppm isobutylene gas (Appendix 1). All calibrations provided accurate readings. The MiniRAE 3000 was used instead of the Thermal Environmental Instruments, Inc., Model 580B 10.6 eV lamp PID specified in the QAPP. This change does not affect the investigation because the two instruments measure VOC using the same technology and report concentrations in the same manner.

## Landfill Gas Meter

The Landtec GEM 2000 landfill gas meter was calibrated prior to use each day's use with atmospheric levels of oxygen and manufacturer-provided calibration gas consisting of 50% methane, 35% carbon dioxide, and 15% nitrogen (Appendix 1). All calibrations provided accurate readings for methane, carbon dioxide, and oxygen.

## 4.1.2 <u>Summa Canister Vacuum Pressures</u>

Vacuum pressure in the Summa canisters used for subsurface soil vapor and indoor air sampling was recorded before and after sampling (Table 4-1 and Appendix 1). The vacuum check before sampling ensures that the canister as received from the laboratory has adequate vacuum to obtain sufficient sample volume. The check after sampling confirms that the canister received adequate volume during sampling.

**Revision Number: 0 Revision Date:** 02/08/10 Page 18

All Summa canisters had adequate (approximately 30" Hg) vacuum before sampling. All canisters recorded adequate vacuum decreases (between 27 and 29" Hg) to obtain the desired sample volume.

## 4.1.3 Adherence to Field Sampling SOPs

All field sampling SOPs specified in the QAPP were followed with the exception of SOP-JCO-41 for the operation of the Thermal Environmental Instruments, Inc., Model 580B PID. Since the MiniRAE 3000 was used for field activities (Appendix 8), the manufacturer operating manual for that instrument was used instead of SOP-JCO-41.

## 4.1.4 Field Duplicate Collection and Analysis

Four soil vapor and one indoor air field duplicates were collected (KPN-JCO-SV-07-DUP, KPN-JCO-SV-09-DUP, KPS-JCO-SV-07-DUP, KPS-JCO-SV-103DUP, and KPN-JCO-IA-01-DUP) and analyzed by the laboratory for methane. Relative percent difference (RPD) calculations between the results from the parent and duplicate samples are shown in Table 4-2. All four methane field duplicates were within the acceptance range of 25%.

Two surface soil field duplicates were collected (KPN-JCO-SS-07-DUP and KPS-JCO-SS-10-DUP) and analyzed by the laboratory for TOC and pH. Relative percent difference (RPD) calculations are shown in Table 4-3. Both field duplicate RPDs for TOC and pH were within the acceptance range of 30%.

## 4.1.5 Field Sampling Completeness

All 24 soil samples and both field duplicates for the analysis of TOC and pH specified in the QAPP were collected.

The indoor air sample and its field duplicate specified in the QAPP were collected and analyzed by the laboratory.

Twenty of the twenty-eight soil vapor samples identified in the QAPP were collected as planned (see Section 2.2.1 for the reasons). Four samples originally planned for KPS (KPS-JCO-04S & D, KPS-JCO-SV-05S & D, KPS-JCO-SV-06S, and KPS-JCO-SV-07D) were not collected. Two samples originally planned for KPN (KPN-JCO-SV-12S and KPN-JCO-SV-13S) were not collected. Five soil vapor samples in KPS not originally planned (KPS-JCO-SV-08S, and KPS-JCO-SV-101S through KPS-JCO-SV-106D) were added to the field program during the field activities.

## 4.2 LABORATORY QUALITY CONTROL

Laboratory quality control results for the four analysis types used in this investigation (soil vapor and indoor air methane; soil TOC; soil pH; and soil IDW TCLP metals) are summarized below. The quality control parameters reviewed for the data usability assessment include: proper chain-of-custody documentation, sample completeness, hold time requirements, temperature receipt requirements, laboratory calibration blank, laboratory continuing calibration verification (CCV) recovery, laboratory control sample (LCS) recovery, attainment of detection limits, method blank detections, and laboratory duplicate RPD accuracy.

## 4.2.1 Soil Vapor and Indoor Air Methane

## Chain-of-Custody Documentation

The soil vapor and methane samples were submitted to the laboratory with three chainof-custody sheets as documentation. All chain-of-custody forms were completed properly.

## Sample Completeness

Both indoor air and all 31 soil vapor samples (27 parent samples and four duplicates) submitted to the laboratory were analyzed.

## Hold Time

All soil vapor and indoor air samples were analyzed within the 14-day hold time.

#### LCS Recovery

The laboratory ran one LCS for each of 4 sample batches. All LCS recoveries were within the  $\pm 30\%$  acceptance range.

## Attainment of Detection Limits

The required reportable quantitation limit of 0.001% (10 ppmv) was attained for all methane analyses.

## Method Blank Detections

Methane was not detected in any method blanks.

## Laboratory Duplicate Analyses

Three laboratory duplicates were analyzed for methane. The RPD for all laboratory duplicates were within the 30% acceptance range.

## 4.2.2 <u>Soil TOC</u>

TOC in surface soil samples was analyzed at Spectrum Analytical of Agawam, Massachusetts (Spectrum) by EPA Method 9060 instead of at Mitkem Laboratories of Warwick, Rhode Island (Mitkem) by the Lloyd Kahn method as specified in the QAPP (Appendix 8). This deviation occurred because the samples were shipped via commercial carrier to Spectrum, the parent company of Mitkem, instead of the intended subsidiary laboratory. Spectrum processed the samples by its standard method of TOC analysis (EPA 9060) because the chain-of-custody did not indicate that the samples were intended for Mitkem. EPA 9060 as performed by Spectrum is a valid method for the evaluation of TOC in soil. The method is comparable to the Lloyd Kahn method in sample preparation and measurement, differing substantially only in the analysis of QC parameters. As such, the TOC analytical technique used by Spectrum is considered valid for this investigation. The QC parameters for EPA 9060 are noted in the QC review below where they differ from those presented in the QAPP for the planned Lloyd Kahn method. Additionally, the Spectrum SOP for the analysis of TOC in soil by EPA 9060 is included in Appendix 7 since it was not included in the QAPP.

**Revision Number: 0 Revision Date:** 02/08/10 Page 21

#### Chain-of-Custody Documentation

The soil samples were submitted to the laboratory with three chain-of-custody sheets as documentation. With the exception of specifying Spectrum instead of Mitkem, the chain-of-custody forms were completed properly.

#### Sample Completeness

All 26 soil samples submitted to the laboratory were analyzed.

## Hold Time

All soil samples were analyzed within the 14 day hold time.

#### Temperature Requirements

Soil samples were sent to the laboratory in two shipping coolers. The temperatures in the coolers were 4.4 and 5.3°C, within the acceptance range of  $4\pm 2^{\circ}$ C.

#### Laboratory Calibration Blank

The laboratory ran 10 calibration blanks, two for each of 5 sample batches. All calibration blanks results were less than the reportable quantitation limit of 100 mg/kg.

## Laboratory CCV

The laboratory ran 20 CCV samples, four for each of 5 sample batches. All CCV recoveries were within the  $\pm 15\%$  acceptance range used by Spectrum and the  $\pm 10\%$  acceptance range specified in the QAPP.

#### LCS Recovery

The laboratory ran one LCS (identified as "Reference" in Spectrum lab reports) for each of 5 sample batches. All five LCS recoveries were within the 67.35-180.7% acceptance range used by Spectrum. Additionally, four out of five LCS recoveries were within the 80-120% acceptance range specified in the QAPP. Reference 8101788-SRM1, corresponding to sample KPS-JCO-SS-08, had a recovery of 177%. However, all four CCV recoveries in the batch were within the acceptance range, so the accuracy of KPS-JCO-SS-08 is considered acceptable.

**Revision Number: 0 Revision Date:** 02/08/10 Page 22

#### Attainment of Detection Limits

The required reportable quantitation limit of 100 mg/kg TOC was attained for all analyses.

#### Method Blank Detections

TOC was not detected in any method blanks.

#### Laboratory Duplicate Analyses

Six laboratory duplicates were analyzed for TOC. The laboratory duplicate RPDs for four of five batches were within the 20% acceptance range. The RPD for the first laboratory duplicate in the remaining batch (Duplicate 8101604-DUP1) was 34%, exceeding the acceptance range by 4%. A second laboratory duplicate (Duplicate 8101604-DUP2) resulted in an RPD of 4%. The batch is considered acceptably precise based on the combined results of the two laboratory duplicates.

This RPD method of laboratory duplicate QC control differs from that specified in the QAPP for the Lloyd Kahn method, which evaluates laboratory precision by analyzing one sample per batch in quadruplicate and comparing the standard deviation to an acceptable range. Both methods are accepted as valid means of evaluating precision.

## 4.2.3 <u>Soil pH</u>

As with the soil TOC analyses, pH was analyzed at Spectrum instead of Mitkem, as specified in the QAPP (Appendix 8). However, Spectrum used the same method (EPA 9045C) specified in the QAPP. Spectrum also used comparable QC parameters as those specified in the QAPP with the addition of an LCS sample, which is included in the QC review below. The Spectrum SOP for the analysis of pH in soil by EPA 9045C is included in Appendix 7 since it was not included in the QAPP.

#### Chain-of-Custody Documentation

The soil samples were submitted to the laboratory with three chain-of-custody sheets as documentation. With the exception of specifying Spectrum instead of Mitkem, the chain-of-custody forms were completed properly.

#### Sample Completeness

All 26 soil samples submitted to the laboratory were analyzed for pH.

## Hold Time

Soil samples were analyzed for pH as soon as possible after receipt at the laboratory per the specification in the QAPP. In the lab reports, however, Spectrum labeled all pH analyses with the qualifier "HT". "HT" indicates that the sample was analyzed over 24 hours after it was collected, even though the Spectrum lab reports state that "the hold time for pH is not specified within the method other than to state that the samples should be analyzed as soon as possible." Therefore, the qualifier is merely an indication of the hold time and does not restrict the usability of the data. Additionally, eight pH analyses (KPN-JCO-SS-06, KPN-JCO-SS-07, KPN-JCO-SS-07-DUP, KPN-JCO-SS-09, KPN-JCO-SS-10, KPN-JCO-SS-11, KPN-JCO-SS-12, and KPN-JCO-SS-13) were incorrectly labeled with "HT" as they were analyzed within 24 hours of sampling.

## Temperature Requirements

Soil samples were sent to the laboratory in two shipping coolers. The temperatures in the coolers were 4.4 and 5.3°C, within the acceptance range of  $4\pm 2^{\circ}$ C.

## LCS Recovery

The laboratory ran two LCS (identified as "Reference" in Spectrum lab reports) for each of 2 sample batches for pH. All four LCS recoveries were within the 97.5-102.5% acceptance range used by Spectrum. This LCS QC parameter had not been included in the QAPP for pH analysis at Mitkem.

## Attainment of Detection Limits

The required project quantitation limit of 0.1 pH units was attained for all analyses.

**Revision Number: 0 Revision Date:** 02/08/10 Page 24

#### Laboratory Duplicate Analyses

Three laboratory duplicates were analyzed for pH. The RPD for all laboratory duplicates was within the acceptance range of 5% used by Spectrum and the acceptance range of 30% specified in the QAPP.

## 4.2.4 Soil IDW TCLP Metals and Mercury

The QAPP did not specify soil IDW TCLP metals or TCLP mercury QC parameters. QC results compared to acceptance parameters provided by Mitkem and for the analysis method are summarized below.

## Chain-of-Custody Documentation

The chain-of-custody form for the soil IDW TCLP metals analysis was completed

properly.

## Sample Completeness

The laboratory analyzed and generated results for the one soil IDW TCLP metals sample.

## Hold Time

The sample was analyzed within the 180-day and 28-day holding times for TCLP metals mercury, respectively.

## Temperature Requirements

The soil sample was delivered to the laboratory in a cooler. The temperature in the cooler upon receipt was  $3.6^{\circ}$ C, within the acceptance range of  $4\pm 2^{\circ}$ C.

## LCS Recovery

The laboratory ran one LCS for TCLP metals and one for TCLP mercury. All recoveries were within the  $\pm 20\%$  acceptance range.

## Attainment of Detection Limits

All reporting limits were below the toxicity characteristic concentrations.

Method Blank Detections No analytes were detected in method blanks.

#### 4.2.5 Data Usability Conclusions

The objectives of collecting this dataset were to: 1) assess the potential for explosive risks from LFG during implementation of the remedial action as well as to current and future onsite and adjacent off-Site structures; and 2) evaluate the bioavailability of contaminants in surface soils.

All data generated during field screening and by the laboratory are considered usable for the purposes of this investigation based on the results of the field and laboratory quality control assessment of calibration, procedure adherence, analytical accuracy, and analytical precision.

Based on the completeness of the data collected, the dataset is usable to evaluate: 1) surface soil contaminant bioavailability; 2) soil IDW toxicity; 3) methane presence in shallow soils in KPN and KPS, along the boundary of KPN and the neighborhood to the east, and along the boundary of KPS and Thomas Elementary School; and 4) potential methane impact to indoor air in the Kenilworth-Parkside Community Center.

#### **5.0 REFERENCES**

- DC GIS. DC GIS Data Clearinghouse/Catalog. District of Columbia Geographic Information System, <u>http://dcatlas.dcgis.dc.gov/catalog/</u>. Retrieved: 12/1/2008.
- E&E, 2007. *Remedial Investigation of Kenilworth Park North, Northeast Washington, DC.* Ecology & Environment. November 2007.
- E&E, 2008. *Remedial Investigation: Kenilworth Park Landfill South, Northeast Washington, DC.* Ecology & Environment. June 2008.
- EPA, 2005. Guidance for Evaluating Landfill Gas Emissions from Closed or Abandoned Facilities. U.S. Environmental Protection Agency. EPA-600/R-05/123a. September, 2005.
- JCO, 2008a. Field Sampling Plan Supplemental Data Collection, Kenilworth Park Landfill, National Capital Parks-East, N.E. Washington, DC. The Johnson Company, October 2008.
- JCO, 2008b. Quality Assurance Project Plan Supplemental Data Collection, Kenilworth Park Landfill, National Capital Parks-East, N.E. Washington, DC. The Johnson Company, October 2008.
- JCO, 2008c. Site-Specific Health and Safety Plan for Supplemental Data Collection, Ke Kenilworth Park Landfill, National Capital Parks-East, N.E. Washington, DC. The Johnson Company, October 2008.
- Landtec, 2007. GEM2000 GEM2000 Plus Gas Analyzer and Extraction Monitor Operation Manual for Sdrial Numbers 10000 and up. <u>http://www.ces-</u> <u>landtec.com/manuals/GEM2000%20Manual.pdf</u>. Retrieved 12/19/2008.

**TABLES** 

| Table 2-1<br>Field Sampling Timeline |                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Date                                 | Field Activities Performed                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
| 10/14/2008                           | <ul> <li>Installed soil vapor probes KPN-JCO-SV-01 through KPN-JCO-SV-09</li> <li>Developed soil vapor probe KPN-JCO-SV-02S and collected field screening data</li> <li>Collected surface soil samples KPN-JCO-SS-01 through KPN-JCO-SS-13</li> </ul>                                                                    |  |  |  |  |  |  |  |  |
| 10/15/2008                           | <ul> <li>Installed soil vapor probes KPN-JCO-SV-10 through KPN-JCO-SV-13</li> <li>Installed soil vapor probes KPS-JCO-SV-01 through KPS-JCO-SV-03, and KPS-JCO-SV-06</li> <li>Collected surface soil samples KPS-JCO-SS-01 through KPS-JCO-SS-11</li> </ul>                                                              |  |  |  |  |  |  |  |  |
| 10/16/2008                           | <ul> <li>Installed soil vapor probes KPS-JCO-SV-07 and KPS-JCO-SV-08</li> <li>Developed all remaining soil vapor probes and collected LFG field screening data</li> <li>Began overnight collection of indoor air samples in Kenilworth-Parkside Community Center</li> <li>Collected composite soil IDW sample</li> </ul> |  |  |  |  |  |  |  |  |
| 10/17/2008                           | <ul> <li>Completed indoor air sampling in Kenilworth-Parkside Community Center</li> <li>Collected soil vapor samples from all probes listed above</li> </ul>                                                                                                                                                             |  |  |  |  |  |  |  |  |
| 3/20/09                              | <ul> <li>Installed soil vapor probes KPS-JCO-SV-101S, KPS-JCO-SW-102S and KPS-JCO-SV-103D through KPS-JCO-SV-106D. KPS-JCO-107D was a soil boring only</li> <li>Developed all newly installed soil vapor probes</li> </ul>                                                                                               |  |  |  |  |  |  |  |  |
| 3/21/09                              | Collected soil vapor samples from KPS-JCO-SV-101S, KPS-JCO-SV-102S and KPS-JCO-SV-103D through KPS-JCO-SV-106D.                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |

K:\3-0700-11\JCO Feasibility Study\Supplemental Data Collection Oct 2008\Supplemental Data Collection Report Dec 2008\Tables\Table 2.doc

## Table 2-2 Summary of Soil Vapor Probe Construction and Samples Kenilworth Park Landfill October 2008

| Soil Vapor            | Installation | Installation |                       |                      | Screened          | Sandpack          | Bentonite     | Development |             |  |  |
|-----------------------|--------------|--------------|-----------------------|----------------------|-------------------|-------------------|---------------|-------------|-------------|--|--|
| Probe/Sample          | Date         | Method       | Northing <sup>1</sup> | Easting <sup>1</sup> | Interval (ft bgs) | Interval (ft bgs) | Seal (ft bgs) | Date        | Sample Date |  |  |
| Kenilworth Park North |              |              |                       |                      |                   |                   |               |             |             |  |  |
| KPN-JCO-SV-01S        | 10/14/2008   | Hand-auger   | 137654.0              | 403882.7             | 1.3-1.9           | 1.2-1.9           | 0.8-1.2       | 10/16/2008  | 10/17/2008  |  |  |
| KPN-JCO-SV-02S        | 10/14/2008   | Hand-auger   | 137836.8              | 403894.5             | 1-1.5             | 0.8-1.5           | 0.6-0.8       | 10/14/2008  | 10/17/2008  |  |  |
| KPN-JCO-SV-03S        | 10/14/2008   | Hand-auger   | 137782.7              | 403997.2             | 1.4-1.9           | 1.25-1.9          | 1.1-1.25      | 10/16/2008  | 10/17/2008  |  |  |
| KPN-JCO-SV-04S        | 10/14/2008   | Hand-auger   | 137964.2              | 404020.2             | 1.4-1.9           | 1.2-1.9           | 1-1.2         | 10/16/2008  | 10/17/2008  |  |  |
| KPN-JCO-SV-05S        | 10/14/2008   | Hand-auger   | 137870.8              | 404140.3             | 1.5-2             | 1.25-2            | 1.1-1.25      | 10/16/2008  | 10/17/2008  |  |  |
| KPN-JCO-SV-06S        | 10/14/2008   | Hand-auger   | 137982.9              | 404342.9             | 1.5-2             | 1.25-2            | 1.1-1.25      | 10/16/2008  | 10/17/2008  |  |  |
| KPN-JCO-SV-07S        | 10/14/2008   | Hand-auger   | 137789.5              | 404454.8             | 1.5-2             | 1.3-2             | 1.2-1.3       | 10/16/2008  | 10/17/2008  |  |  |
| KPN-JCO-SV-08S        | 10/14/2008   | Hand-auger   | 137890.6              | 404669.7             | 0.6-1.1           | 0.5-1.1           | 0.3-0.5       | 10/16/2008  | 10/17/2008  |  |  |
| KPN-JCO-SV-09S        | 10/14/2008   | Hand-auger   | 137796.5              | 404791.5             | 1.5-2             | 1.25-2            | 1.1-1.25      | 10/16/2008  | 10/17/2008  |  |  |
| KPN-JCO-SV-10S        | 10/15/2008   | Geoprobe®    | 137655.2              | 404651.4             | 1.5-2             | 1-2               | 0.5-1         | 10/16/2008  | 10/17/2008  |  |  |
| KPN-JCO-SV-10D        | 10/15/2008   | Geoprobe®    | 137654.8              | 404652.5             | 6-6.5             | 5.5-6.5           | 4.6-5.5       | 10/16/2008  | 10/17/2008  |  |  |
| KPN-JCO-SV-11S        | 10/15/2008   | Geoprobe®    | 137656.8              | 404776.0             | 1.5-2             | 1.3-2.5           | 0.9-1.3       | 10/16/2008  | 10/17/2008  |  |  |
| KPN-JCO-SV-11D        | 10/15/2008   | Geoprobe®    | 137656.8              | 404776.9             | 5.5-6             | 5.3-6             | 3-5.3         | 10/16/2008  | 10/17/2008  |  |  |
| KPN-JCO-SV-12D        | 10/15/2008   | Geoprobe®    | 137671.2              | 404895.7             | 6-6.5             | 5.7-6.5           | 4.8-5.7       | 10/16/2008  | 10/17/2008  |  |  |
| KPN-JCO-SV-13D        | 10/15/2008   | Geoprobe®    | 137926.7              | 405016.6             | 5.5-6             | 5-6               | 4.3-5         | 10/16/2008  | 10/17/2008  |  |  |
| Kenilworth Park South |              | -            | -                     |                      |                   |                   |               |             |             |  |  |
| KPS-JCO-SV-01S        | 10/15/2008   | Hand-auger   | 137451.9              | 403955.2             | 1.5-2             | 1.3-2             | 1.2-1.3       | 10/16/2008  | 10/17/2008  |  |  |
| KPS-JCO-SV-02S        | 10/15/2008   | Hand-auger   | 137312.4              | 403948.8             | 1.5-2             | 1.25-2            | 1.1-1.25      | 10/16/2008  | 10/17/2008  |  |  |
| KPS-JCO-SV-03S        | 10/15/2008   | Hand-auger   | 137173.2              | 403885.2             | 1.5-2             | 1.25-2            | 1.1-1.25      | 10/16/2008  | 10/17/2008  |  |  |
| KPS-JCO-SV-06D        | 10/15/2008   | Geoprobe®    | 137084.0              | 403928.4             | 3.5-4             | 3.3-4             | 1.7-3.3       | 10/16/2008  | 10/17/2008  |  |  |
| KPS-JCO-SV-07S        | 10/16/2008   | Hand-auger   | 137119.9              | 404012.6             | 1.2-1.7           | 1-1.7             | 0.8-1.7       | 10/16/2008  | 10/17/2008  |  |  |
| KPS-JCO-SV-08D        | 10/16/2008   | Hand-auger   | 137240.1              | 404103.1             | 2.3-2.8           | 2.1-2.8           | 1.6-2.1       | 10/16/2008  | 10/17/2008  |  |  |

Notes:

<sup>1</sup>Coordinates in Maryland State Plane (meters)

ft bgs = feet below ground surface

Created by: DWS 12/8/08 Checked by:

# Table 2-3

#### Surface Soil Samples Kenilworth Park Landfill October 2008

| Sample                       | Sample Date | Northing <sup>1</sup> | Easting <sup>1</sup> | Sample Depth |
|------------------------------|-------------|-----------------------|----------------------|--------------|
| Kenilworth Park North        |             |                       |                      |              |
| KPN-JCO-SS-01                | 10/14/2008  | 137654.0              | 403882.7             | 0-6"         |
| KPN-JCO-SS-02                | 10/14/2008  | 137836.8              | 403894.5             | 0-6"         |
| KPN-JCO-SS-03                | 10/14/2008  | 137782.7              | 403997.2             | 0-6"         |
| KPN-JCO-SS-04                | 10/14/2008  | 137964.2              | 404020.2             | 0-6"         |
| KPN-JCO-SS-05                | 10/14/2008  | 137870.8              | 404140.3             | 0-6"         |
| KPN-JCO-SS-06                | 10/14/2008  | 138114.4              | 404259.9             | 0-6"         |
| KPN-JCO-SS-07                | 10/14/2008  | 138029.1              | 404397.1             | 0-6"         |
| KPN-JCO-SS-07 DUP            | 10/14/2008  | 138029.1              | 404397.1             | 0-6"         |
| KPN-JCO-SS-08                | 10/14/2008  | 137982.9              | 404342.9             | 0-6"         |
| KPN-JCO-SS-09                | 10/14/2008  | 137789.5              | 404454.8             | 0-6"         |
| KPN-JCO-SS-10                | 10/14/2008  | 137875.3              | 404643.8             | 0-6"         |
| KPN-JCO-SS-11                | 10/14/2008  | 137655.2              | 404651.4             | 0-6"         |
| KPN-JCO-SS-12                | 10/14/2008  | 137713.1              | 404902.8             | 0-6"         |
| KPN-JCO-SS-13                | 10/14/2008  | 137951.9              | 404821.6             | 0-6"         |
| <b>Kenilworth Park South</b> |             |                       |                      |              |
| KPS-JCO-SS-01                | 10/15/2008  | 137507.6              | 403752.7             | 0-6"         |
| KPS-JCO-SS-02                | 10/15/2008  | 137368.5              | 403660.6             | 0-6"         |
| KPS-JCO-SS-03                | 10/15/2008  | 137275.1              | 403608.6             | 0-6"         |
| KPS-JCO-SS-04                | 10/15/2008  | 137396.5              | 403794.5             | 0-6"         |
| KPS-JCO-SS-05                | 10/15/2008  | 137208.2              | 403775.2             | 0-6"         |
| KPS-JCO-SS-06                | 10/15/2008  | 137413.7              | 403862.3             | 0-6"         |
| KPS-JCO-SS-07                | 10/15/2008  | 137260.6              | 403841.9             | 0-6"         |
| KPS-JCO-SS-08                | 10/15/2008  | 137481.1              | 403953.2             | 0-6"         |
| KPS-JCO-SS-09                | 10/15/2008  | 137398.6              | 403972.7             | 0-6"         |
| KPS-JCO-SS-10                | 10/15/2008  | 137178.3              | 403861.3             | 0-6"         |
| KPS-JCO-SS-10 DUP            | 10/15/2008  | 137178.3              | 403861.3             | 0-6"         |
| KPS-JCO-SS-11                | 10/15/2008  | 137132.4              | 403931.4             | 0-6"         |

Notes:

<sup>1</sup>Coordinates in Maryland State Plane (meters)

Created by: DWS 12/8/08 Checked by:

#### Table 3-1 Soil Vapor Screening Results October 2008 Kenilworth Park Landfill

|                    | Development | PID VOCs |             | Methane |         |        |       |
|--------------------|-------------|----------|-------------|---------|---------|--------|-------|
| Sample             | Date        | (ppm)    | Methane (%) | (ppmv)  | CO2 (%) | O2 (%) | %LEL* |
| Kenilworth Park No | orth        |          |             |         |         |        |       |
| KPN-JCO-SV-01S     | 10/16/2008  | 0.4      | 0%          | 0       | 3.6%    | 16.2%  | 0%    |
| KPN-JCO-SV-02S     | 10/14/2008  | 0.7      | 0%          | 0       | 1.0%    | 19.4%  | 0%    |
| KPN-JCO-SV-03S     | 10/16/2008  | 1.4      | 0%          | 0       | 0.4%    | 20.8%  | 0%    |
| KPN-JCO-SV-04S     | 10/16/2008  | 6.3      | 0%          | 0       | 4.9%    | 15.7%  | 0%    |
| KPN-JCO-SV-05S     | 10/16/2008  | 0.5      | 0%          | 0       | 0.7%    | 20.7%  | 0%    |
| KPN-JCO-SV-06S     | 10/16/2008  | 0.4      | 0%          | 0       | 1.1%    | 20.3%  | 0%    |
| KPN-JCO-SV-07S     | 10/16/2008  | 0.9      | 0%          | 0       | 0.9%    | 20.2%  | 0%    |
| KPN-JCO-SV-08S     | 10/16/2008  | 0.6      | 0%          | 0       | 0.9%    | 19.8%  | 0%    |
| KPN-JCO-SV-09S     | 10/16/2008  | 0.7      | 43.5%       | 435,000 | 2.4%    | 8.1%   | >100% |
| KPN-JCO-SV-10S     | 10/16/2008  | 0.4      | 0%          | 0       | 0.0%    | 13.8%  | 0%    |
| KPN-JCO-SV-10D     | 10/16/2008  | 4.2      | 0%          | 0       | 9.4%    | 0.3%   | 0%    |
| KPN-JCO-SV-11S     | 10/16/2008  | 1        | 0%          | 0       | 1.4%    | 19.7%  | 0%    |
| KPN-JCO-SV-11D     | 10/16/2008  | 0.2      | 0%          | 0       | 1.9%    | 17.8%  | 0%    |
| KPN-JCO-SV-12D     | 10/16/2008  | 0.1      | 0%          | 0       | 7.0%    | 12.2%  | 0%    |
| KPN-JCO-SV-13D     | 10/16/2008  | 0.1      | 0%          | 0       | 8.2%    | 12.0%  | 0%    |
| Kenilworth Park So | outh        |          |             |         |         |        |       |
| KPS-JCO-SV-01S     | 10/16/2008  | 5.3      | 7.3%        | 73,000  | 14.6%   | 0.5%   | >100% |
| KPS-JCO-SV-02S     | 10/16/2008  | 0.4      | 0%          | 0       | 3.3%    | 17.7%  | 0%    |
| KPS-JCO-SV-03S     | 10/16/2008  | 1.0      | 8.0%        | 80,000  | 17.4%   | 0.4%   | >100% |
| KPS-JCO-SV-06D     | 10/16/2008  | 1.8      | 69.5%       | 695,000 | 30.0%   | 0.1%   | >100% |
| KPS-JCO-SV-07S     | 10/16/2008  | 0.7      | 21.5%       | 215,000 | 13.6%   | 7.1%   | >100% |
| KPS-JCO-SV-08D     | 10/16/2008  | 0.3      | 0%          | 0       | 2.9%    | 17.7%  | 0%    |

Notes:

\*LEL≈5% in air, or 50,000 ppmv of methane

#### Table 3-2 Soil Vapor Methane Analytical Results October 2008 Kenilworth Park Landfill

| Sample                           | Date       | <b>Concentration</b> (ppmv) | % Lower Explosive Limit* |
|----------------------------------|------------|-----------------------------|--------------------------|
| Kenilworth Park North            |            |                             |                          |
| KPN-JCO-SV-01S                   | 10/17/2008 | ND < 10                     | < 0.02%                  |
| KPN-JCO-SV-02S                   | 10/17/2008 | ND < 10                     | < 0.02%                  |
| KPN-JCO-SV-03S                   | 10/17/2008 | ND < 10                     | < 0.02%                  |
| KPN-JCO-SV-04S                   | 10/17/2008 | ND < 10                     | < 0.02%                  |
| KPN-JCO-SV-05S                   | 10/17/2008 | ND < 10                     | < 0.02%                  |
| KPN-JCO-SV-06S                   | 10/17/2008 | ND < 10                     | < 0.02%                  |
| KPN-JCO-SV-07S                   | 10/17/2008 | ND < 10                     | < 0.02%                  |
| KPN-JCO-SV-07S-DUP               | 10/17/2008 | ND < 10                     | < 0.02%                  |
| KPN-JCO-SV-08S                   | 10/17/2008 | ND < 10                     | < 0.02%                  |
| KPN-JCO-SV-09S                   | 10/17/2008 | 37,000                      | 74%                      |
| KPN-JCO-SV-09S-DUP               | 10/17/2008 | 39,000                      | 78%                      |
| KPN-JCO-SV-09S-DUP Lab Duplicate | 10/17/2008 | 40,390                      | 81%                      |
| KPN-JCO-SV-10S                   | 10/17/2008 | ND < 10                     | < 0.02%                  |
| KPN-JCO-SV-10D                   | 10/17/2008 | 87                          | 0.2%                     |
| KPN-JCO-SV-11S                   | 10/17/2008 | ND < 10                     | < 0.02%                  |
| KPN-JCO-SV-11D                   | 10/17/2008 | ND < 10                     | < 0.02%                  |
| KPN-JCO-SV-12D                   | 10/17/2008 | 870                         | 1.7%                     |
| KPN-JCO-SV-13D                   | 10/17/2008 | ND < 10                     | < 0.02%                  |
| Kenilworth Park South            |            |                             |                          |
| KPS-JCO-SV-01S                   | 10/17/2008 | 23,000                      | 46%                      |
| KPS-JCO-SV-02S                   | 10/17/2008 | ND < 10                     | < 0.02%                  |
| KPS-JCO-SV-03S                   | 10/17/2008 | 1,400                       | 2.8%                     |
| KPS-JCO-SV-06D                   | 10/17/2008 | 140,000                     | 280%                     |
| KPS-JCO-SV-07S                   | 10/17/2008 | 89,000                      | 178%                     |
| KPS-JCO-SV-07S-DUP               | 10/17/2008 | 90,840                      | 182%                     |
| KPS-JCO-SV-08D                   | 10/17/2008 | ND < 10                     | < 0.02%                  |

Notes:

ND < ## = Compound not detected in sample above the laboratory reporting limit, limit provided.

\*LEL≈5% in air, or 50,000 ppmv of methane

Results highlighted and in bold indicate results above 100% LEL

#### Table 3-3 Summary of Surface Soil Analyses October 2008 Kenilworth Park Landfill

|                       |            |      | Total Organic Carbon |
|-----------------------|------------|------|----------------------|
| Sample                | Date       | pН   | (mg/kg)              |
| Kenilworth Park North | •          |      | •                    |
| KPN-JCO-SS-01         | 10/14/2008 | 7.19 | 7,390                |
| KPN-JCO-SS-02         | 10/14/2008 | 7.29 | 3,370                |
| KPN-JCO-SS-03         | 10/14/2008 | 7.42 | 9,790                |
| KPN-JCO-SS-04         | 10/14/2008 | 7.11 | 6,620                |
| KPN-JCO-SS-05         | 10/14/2008 | 6.86 | 13,000               |
| KPN-JCO-SS-06         | 10/14/2008 | 7.08 | 23,000               |
| KPN-JCO-SS-07         | 10/14/2008 | 6.74 | 37,200               |
| KPN-JCO-SS-07-DUP     | 10/14/2008 | 6.44 | 50,100               |
| KPN-JCO-SS-08         | 10/14/2008 | 7.08 | 3,510                |
| KPN-JCO-SS-09         | 10/14/2008 | 7.22 | 5,460                |
| KPN-JCO-SS-10         | 10/14/2008 | 7.18 | 11,600               |
| KPN-JCO-SS-11         | 10/14/2008 | 7.44 | 8,420                |
| KPN-JCO-SS-12         | 10/14/2008 | 7.38 | 16,200               |
| KPN-JCO-SS-13         | 10/14/2008 | 6.53 | 33,200               |
| Kenilworth Park South |            |      |                      |
| KPS-JCO-SS-01         | 10/15/2008 | 7.56 | 7,660                |
| KPS-JCO-SS-02         | 10/15/2008 | 6.90 | 13,000               |
| KPS-JCO-SS-03         | 10/15/2008 | 6.99 | 18,500               |
| KPS-JCO-SS-04         | 10/15/2008 | 7.29 | 2,640                |
| KPS-JCO-SS-05         | 10/15/2008 | 7.27 | 5,820                |
| KPS-JCO-SS-06         | 10/15/2008 | 7.22 | 2,920                |
| KPS-JCO-SS-07         | 10/15/2008 | 7.04 | 11,600               |
| KPS-JCO-SS-08         | 10/15/2008 | 6.87 | 60,500               |
| KPS-JCO-SS-09         | 10/15/2008 | 6.77 | 175,000              |
| KPS-JCO-SS-10         | 10/15/2008 | 7.29 | 3,940                |
| KPS-JCO-SS-10-DUP     | 10/15/2008 | 7.27 | 3,700                |
| KPS-JCO-SS-11         | 10/15/2008 | 7.37 | 2,050                |

### Table 3-4 Investigation-Derived Waste Analytical Results Kenilworth Park Landfill October 2008

| Analyte       | Regulatory<br>Level<br>(mg/L) | COMPOSITEKPN1<br>TCLP Result (mg/L) |
|---------------|-------------------------------|-------------------------------------|
| TCLP Arsenic  | 5.0                           | ND < 0.02                           |
| TCLP Barium   | 100.0                         | 0.95                                |
| TCLP Cadmium  | 1.0                           | 0.017                               |
| TCLP Chromium | 5.0                           | ND < 0.02                           |
| TCLP Lead     | 5.0                           | 0.26                                |
| TCLP Mercury  | 0.2                           | ND < 0.02                           |
| TCLP Selenium | 1.0                           | ND < 0.03                           |
| TCLP Silver   | 5.0                           | ND < 0.03                           |

Notes:

Regulatory Levels for the definition of a hazardous waste per 40 CFR 261.24

Created by: DWS 12/8/08 Checked by:

### Table 4-1 Summa Canister Vacuum Pressures Kenilworth Park Landfill October 2008

| Vacuum Before<br>Sample         Vacuum After<br>Sampling (" Hg)           Indoor Air (6 liter, 12 hour sampling time)         Sampling (" Hg)           KPN-JCO-IA-01         29         <1           KPN-JCO-IA-01DUP         29.5         1           KPN Soil Vapor (3.2 liter, 30 minute sampling time)             KPN-JCO-SV-01S         29         1            KPN-JCO-SV-02S         29         1            KPN-JCO-SV-03S         30         2            KPN-JCO-SV-04S         29         <2            KPN-JCO-SV-05S         30         2            KPN-JCO-SV-06S         30         1            KPN-JCO-SV-07S-DUP         32         4            KPN-JCO-SV-08S         29         2            KPN-JCO-SV-08S         29         2            KPN-JCO-SV-09S         29         1            KPN-JCO-SV-09S         29         1            KPN-JCO-SV-10D         29         1            KPN-JCO-SV-11D         30         3            KPN-JCO-SV-12D         29         1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                             | 0000001 2000          |                 |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------|-----------------|--|--|--|--|
| Indoor Air (6 liter, 12 hour sampling time)         Image: Constraint of the symplection of the |                                             | Vacuum Before         | Vacuum After    |  |  |  |  |
| KPN-JCO-IA-01       29       <1         KPN-JCO-IA-01DUP       29.5       1         KPN Soil Vapor (3.2 liter, 30 minute sampling time)          KPN-JCO-SV-01S       29       1         KPN-JCO-SV-02S       29       1         KPN-JCO-SV-02S       29       1         KPN-JCO-SV-02S       29       1         KPN-JCO-SV-02S       29       2         KPN-JCO-SV-04S       29       <2         KPN-JCO-SV-05S       30       2         KPN-JCO-SV-06S       30       1         KPN-JCO-SV-07S       30       >1         KPN-JCO-SV-07S       30       >1         KPN-JCO-SV-07S       30       >1         KPN-JCO-SV-07S       30       2         KPN-JCO-SV-09S       29       2         KPN-JCO-SV-09S       29       1         KPN-JCO-SV-10D       29       1         KPN-JCO-SV-11D       30       3         KPN-JCO-SV-12D       29       1.25         KPN-JCO-SV-13D       30.5       2         KPS-JCO-SV-13D       30.5       2         KPS-JCO-SV-01S       29       1         KPS-JCO-SV-01S       29       1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample                                      | Sampling (" Hg)       | Sampling (" Hg) |  |  |  |  |
| KPN-JCO-IA-01DUP         29.5         1           KPN Soil Vapor (3.2 liter, 30 minute sampling time)         KPN-JCO-SV-01S         29         1           KPN-JCO-SV-01S         29         1         KPN-JCO-SV-02S         29         1           KPN-JCO-SV-02S         29         1         KPN-JCO-SV-02S         29         1           KPN-JCO-SV-02S         29         1         KPN-JCO-SV-02S         29         2           KPN-JCO-SV-04S         29         <2         KPN-JCO-SV-04S         29         <2           KPN-JCO-SV-05S         30         1         KPN-JCO-SV-06S         30         1           KPN-JCO-SV-06S         30         1         KPN-JCO-SV-07S         30         >1           KPN-JCO-SV-07S-DUP         32         4         KPN-JCO-SV-08S         29         2           KPN-JCO-SV-08S         29         2         KPN-JCO-SV-09S-DUP         30         2           KPN-JCO-SV-10D         29         1         KPN-JCO-SV-10D         29         1           KPN-JCO-SV-11D         30         3         3         KPN-JCO-SV-13D         30.5         2           KPS Soil Vapor (3.2 liter, 30 minute sampling time)         KPS-JCO-SV-01S         29         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Indoor Air (6 liter, 12 hour sampling time) |                       |                 |  |  |  |  |
| KPN Soil Vapor (3.2 liter, 30 minute sampling time)           KPN-JCO-SV-01S         29         1           KPN-JCO-SV-02S         29         1           KPN-JCO-SV-02S         29         1           KPN-JCO-SV-03S         30         2           KPN-JCO-SV-04S         29         <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | KPN-JCO-IA-01                               | 29                    | <1              |  |  |  |  |
| KPN-JCO-SV-01S       29       1         KPN-JCO-SV-02S       29       1         KPN-JCO-SV-03S       30       2         KPN-JCO-SV-04S       29       <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | KPN-JCO-IA-01DUP                            | 29.5                  | 1               |  |  |  |  |
| KPN-JCO-SV-02S         29         1           KPN-JCO-SV-03S         30         2           KPN-JCO-SV-04S         29         <2           KPN-JCO-SV-05S         30         2           KPN-JCO-SV-05S         30         2           KPN-JCO-SV-05S         30         1           KPN-JCO-SV-06S         30         1           KPN-JCO-SV-07S         30         >1           KPN-JCO-SV-07S-DUP         32         4           KPN-JCO-SV-07S-DUP         32         4           KPN-JCO-SV-09S         29         2           KPN-JCO-SV-09S         29         >1           KPN-JCO-SV-09S         29         1           KPN-JCO-SV-10S         29         1           KPN-JCO-SV-10D         29         1           KPN-JCO-SV-11D         30         3           KPN-JCO-SV-12D         29         1.25           KPN-JCO-SV-13D         30.5         2           KPS Soil Vapor (3.2 liter, 30 minute sampling time)         KPS-JCO-SV-01S           KPS-JCO-SV-01S         29         1           KPS-JCO-SV-03S         29.5         1           KPS-JCO-SV-03S         29.5         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | KPN Soil Vapor (3.2 lite                    | er, 30 minute samplin | ng time)        |  |  |  |  |
| KPN-JCO-SV-03S         30         2           KPN-JCO-SV-04S         29         <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | KPN-JCO-SV-01S                              | 29                    | 1               |  |  |  |  |
| KPN-JCO-SV-04S       29       <2         KPN-JCO-SV-05S       30       2         KPN-JCO-SV-06S       30       1         KPN-JCO-SV-07S       30       >1         KPN-JCO-SV-07S       30       >1         KPN-JCO-SV-07S       30       >1         KPN-JCO-SV-07S-DUP       32       4         KPN-JCO-SV-08S       29       2         KPN-JCO-SV-09S       29       >1         KPN-JCO-SV-09S-DUP       30       2         KPN-JCO-SV-10S       29       1         KPN-JCO-SV-10D       29       1         KPN-JCO-SV-11S       31       3         KPN-JCO-SV-11D       30       3         KPN-JCO-SV-12D       29       1.25         KPN-JCO-SV-13D       30.5       2         KPS Soil Vapor (3.2 liter, 30 minute sampling time)       KPS-JCO-SV-01S         KPS-JCO-SV-01S       29       1         KPS-JCO-SV-02S       30       3         KPS-JCO-SV-03S       29.5       1         KPS-JCO-SV-06D       29       <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | KPN-JCO-SV-02S                              | 29                    | 1               |  |  |  |  |
| KPN-JCO-SV-05S         30         2           KPN-JCO-SV-06S         30         1           KPN-JCO-SV-07S         30         >1           KPN-JCO-SV-07S         30         >1           KPN-JCO-SV-07S         30         >1           KPN-JCO-SV-07S-DUP         32         4           KPN-JCO-SV-08S         29         2           KPN-JCO-SV-09S         29         >1           KPN-JCO-SV-09S-DUP         30         2           KPN-JCO-SV-10S         29         1           KPN-JCO-SV-10D         29         1           KPN-JCO-SV-10D         29         1           KPN-JCO-SV-11D         30         3           KPN-JCO-SV-12D         29         1.25           KPN-JCO-SV-13D         30.5         2           KPS Soil Vapor (3.2 liter, 30 minute sampling time)         KPS-JCO-SV-01S           KPS-JCO-SV-01S         29         1           KPS-JCO-SV-02S         30         3           KPS-JCO-SV-03S         29.5         1           KPS-JCO-SV-06D         29         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | KPN-JCO-SV-03S                              | 30                    | 2               |  |  |  |  |
| KPN-JCO-SV-06S         30         1           KPN-JCO-SV-07S         30         >1           KPN-JCO-SV-07S-DUP         32         4           KPN-JCO-SV-08S         29         2           KPN-JCO-SV-09S         29         >1           KPN-JCO-SV-09S         29         >1           KPN-JCO-SV-09S-DUP         30         2           KPN-JCO-SV-10S         29         1           KPN-JCO-SV-10D         29         1           KPN-JCO-SV-10D         29         1           KPN-JCO-SV-10D         29         1           KPN-JCO-SV-11S         31         3           KPN-JCO-SV-11D         30         3           KPN-JCO-SV-12D         29         1.25           KPN-JCO-SV-13D         30.5         2           KPS Soil Vapor (3.2 liter, 30 minute sampling time)         KPS-JCO-SV-01S         29           KPS-JCO-SV-01S         29         1         KPS-JCO-SV-02S           KPS-JCO-SV-03S         29.5         1         KPS-JCO-SV-06D           KPS-JCO-SV-07S         31         4         KPS-JCO-SV-07S-DUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KPN-JCO-SV-04S                              | 29                    | <2              |  |  |  |  |
| KPN-JCO-SV-07S         30         >1           KPN-JCO-SV-07S-DUP         32         4           KPN-JCO-SV-08S         29         2           KPN-JCO-SV-09S         29         >1           KPN-JCO-SV-09S         29         >1           KPN-JCO-SV-09S-DUP         30         2           KPN-JCO-SV-09S-DUP         30         2           KPN-JCO-SV-10S         29         1           KPN-JCO-SV-10D         29         1           KPN-JCO-SV-11D         30         3           KPN-JCO-SV-11D         30         3           KPN-JCO-SV-12D         29         1.25           KPN-JCO-SV-13D         30.5         2           KPS Soil Vapor (3.2 liter, 30 minute sampling time)         KPS-JCO-SV-01S         29           KPS-JCO-SV-01S         29         1           KPS-JCO-SV-02S         30         3           KPS-JCO-SV-03S         29.5         1           KPS-JCO-SV-07S         31         4           KPS-JCO-SV-07S-DUP         29         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KPN-JCO-SV-05S                              | 30                    | 2               |  |  |  |  |
| KPN-JCO-SV-07S-DUP         32         4           KPN-JCO-SV-08S         29         2           KPN-JCO-SV-09S         29         >1           KPN-JCO-SV-09S-DUP         30         2           KPN-JCO-SV-09S-DUP         30         2           KPN-JCO-SV-10S         29         1           KPN-JCO-SV-10D         29         1           KPN-JCO-SV-10D         29         1           KPN-JCO-SV-11S         31         3           KPN-JCO-SV-11D         30         3           KPN-JCO-SV-12D         29         1.25           KPN-JCO-SV-13D         30.5         2           KPS Soil Vapor (3.2 liter, 30 minute sampling time)         KPS-JCO-SV-01S         29           KPS-JCO-SV-02S         30         3           KPS-JCO-SV-03S         29.5         1           KPS-JCO-SV-06D         29         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KPN-JCO-SV-06S                              | 30                    | 1               |  |  |  |  |
| KPN-JCO-SV-08S         29         2           KPN-JCO-SV-09S         29         >1           KPN-JCO-SV-09S-DUP         30         2           KPN-JCO-SV-10S         29         1           KPN-JCO-SV-10D         29         1           KPN-JCO-SV-10D         29         1           KPN-JCO-SV-10D         29         1           KPN-JCO-SV-11S         31         3           KPN-JCO-SV-11D         30         3           KPN-JCO-SV-11D         30         3           KPN-JCO-SV-12D         29         1.25           KPN-JCO-SV-13D         30.5         2           KPS Soil Vapor (3.2 liter, 30 minute sampling time)         KPS-JCO-SV-01S         29           KPS-JCO-SV-01S         29         1           KPS-JCO-SV-03S         29.5         1           KPS-JCO-SV-06D         29         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | KPN-JCO-SV-07S                              | 30                    | >1              |  |  |  |  |
| KPN-JCO-SV-09S         29         >1           KPN-JCO-SV-09S-DUP         30         2           KPN-JCO-SV-10S         29         1           KPN-JCO-SV-10D         29         1           KPN-JCO-SV-10D         29         1           KPN-JCO-SV-11S         31         3           KPN-JCO-SV-11D         30         3           KPN-JCO-SV-12D         29         1.25           KPN-JCO-SV-13D         30.5         2           KPS Soil Vapor (3.2 liter, 30 minute sampling time)         KPS-JCO-SV-01S         29           KPS-JCO-SV-01S         29         1           KPS-JCO-SV-02S         30         3           KPS-JCO-SV-03S         29.5         1           KPS-JCO-SV-06D         29         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | KPN-JCO-SV-07S-DUP                          | 32                    | 4               |  |  |  |  |
| KPN-JCO-SV-09S-DUP         30         2           KPN-JCO-SV-10S         29         1           KPN-JCO-SV-10D         29         1           KPN-JCO-SV-10D         29         1           KPN-JCO-SV-11D         31         3           KPN-JCO-SV-11D         30         3           KPN-JCO-SV-11D         30         3           KPN-JCO-SV-11D         30         3           KPN-JCO-SV-12D         29         1.25           KPN-JCO-SV-13D         30.5         2           KPS Soil Vapor (3.2 liter, 30 minute sampling time)         KPS-JCO-SV-01S         29           KPS-JCO-SV-01S         29         1           KPS-JCO-SV-02S         30         3           KPS-JCO-SV-03S         29.5         1           KPS-JCO-SV-06D         29         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | KPN-JCO-SV-08S                              | 29                    | 2               |  |  |  |  |
| KPN-JCO-SV-10S         29         1           KPN-JCO-SV-10D         29         1           KPN-JCO-SV-11S         31         3           KPN-JCO-SV-11D         30         3           KPN-JCO-SV-11D         30         3           KPN-JCO-SV-12D         29         1.25           KPN-JCO-SV-13D         30.5         2           KPS Soil Vapor (3.2 liter, 30 minute sampling time)         KPS-JCO-SV-01S         29         1           KPS-JCO-SV-02S         30         3         3           KPS-JCO-SV-03S         29.5         1         KPS-JCO-SV-06D         29         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | KPN-JCO-SV-09S                              | 29                    | >1              |  |  |  |  |
| KPN-JCO-SV-10D         29         1           KPN-JCO-SV-11S         31         3           KPN-JCO-SV-11D         30         3           KPN-JCO-SV-12D         29         1.25           KPN-JCO-SV-13D         30.5         2           KPS Soil Vapor (3.2 liter, 30 minute sampling time)         KPS-JCO-SV-01S         29           KPS-JCO-SV-01S         29         1           KPS-JCO-SV-02S         30         3           KPS-JCO-SV-03S         29.5         1           KPS-JCO-SV-06D         29         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | KPN-JCO-SV-09S-DUP                          | 30                    | 2               |  |  |  |  |
| KPN-JCO-SV-11S         31         3           KPN-JCO-SV-11D         30         3           KPN-JCO-SV-12D         29         1.25           KPN-JCO-SV-13D         30.5         2           KPS Soil Vapor (3.2 liter, 30 minute sampling time)         KPS-JCO-SV-01S         29           KPS-JCO-SV-01S         29         1           KPS-JCO-SV-02S         30         3           KPS-JCO-SV-03S         29.5         1           KPS-JCO-SV-06D         29         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | KPN-JCO-SV-10S                              | 29                    | 1               |  |  |  |  |
| KPN-JCO-SV-11D         30         3           KPN-JCO-SV-12D         29         1.25           KPN-JCO-SV-13D         30.5         2           KPS Soil Vapor (3.2 liter, 30 minute sampling time)         KPS-JCO-SV-01S         29         1           KPS-JCO-SV-01S         29         1         30         3           KPS-JCO-SV-02S         30         3         3           KPS-JCO-SV-03S         29.5         1         3           KPS-JCO-SV-06D         29         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | KPN-JCO-SV-10D                              | 29                    | 1               |  |  |  |  |
| KPN-JCO-SV-12D         29         1.25           KPN-JCO-SV-13D         30.5         2           KPS Soil Vapor (3.2 liter, 30 minute sampling time)         KPS-JCO-SV-01S         29         1           KPS-JCO-SV-01S         29         1         30.5         30         3           KPS-JCO-SV-02S         30         3         3         3         3           KPS-JCO-SV-03S         29.5         1         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | KPN-JCO-SV-11S                              | 31                    | 3               |  |  |  |  |
| KPN-JCO-SV-13D         30.5         2           KPS Soil Vapor (3.2 liter, 30 minute sampling time)         XPS-JCO-SV-01S         29         1           KPS-JCO-SV-01S         29         1         XPS-JCO-SV-02S         30         3           KPS-JCO-SV-02S         30         2         3         XPS-JCO-SV-03S         29.5         1           KPS-JCO-SV-06D         29         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | KPN-JCO-SV-11D                              | 30                    | 3               |  |  |  |  |
| KPS Soil Vapor (3.2 liter, 30 minute sampling time)           KPS-JCO-SV-01S         29         1           KPS-JCO-SV-02S         30         3           KPS-JCO-SV-03S         29.5         1           KPS-JCO-SV-06D         29         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | KPN-JCO-SV-12D                              | 29                    | 1.25            |  |  |  |  |
| KPS-JCO-SV-01S       29       1         KPS-JCO-SV-02S       30       3         KPS-JCO-SV-03S       29.5       1         KPS-JCO-SV-06D       29       <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | KPN-JCO-SV-13D                              | 30.5                  | 2               |  |  |  |  |
| KPS-JCO-SV-02S         30         3           KPS-JCO-SV-03S         29.5         1           KPS-JCO-SV-06D         29         <1           KPS-JCO-SV-07S         31         4           KPS-JCO-SV-07S-DUP         29         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | KPS Soil Vapor (3.2 lite                    | r, 30 minute samplin  | ng time)        |  |  |  |  |
| KPS-JCO-SV-03S         29.5         1           KPS-JCO-SV-06D         29         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | KPS-JCO-SV-01S                              | 29                    | 1               |  |  |  |  |
| KPS-JCO-SV-06D         29         <1           KPS-JCO-SV-07S         31         4           KPS-JCO-SV-07S-DUP         29         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | KPS-JCO-SV-02S                              | 30                    | 3               |  |  |  |  |
| KPS-JCO-SV-07S         31         4           KPS-JCO-SV-07S-DUP         29         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | KPS-JCO-SV-03S                              | 29.5                  | 1               |  |  |  |  |
| KPS-JCO-SV-07S-DUP 29 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | KPS-JCO-SV-06D                              | 29                    | <1              |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KPS-JCO-SV-07S                              | 31                    | 4               |  |  |  |  |
| KPS-JCO-SV-08D         31         2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | KPS-JCO-SV-07S-DUP                          | 29                    | <1              |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KPS-JCO-SV-08D                              | 31                    | 2.5             |  |  |  |  |

Created by: DWS 12/8/08 Checked by:

Page 1 of 1 12/22/2008 K:\3-0700-11\JCO Feasibility Study\Supplemental Data Collection Oct 2008\Supplemental Data Collection Report Dec 2008\Tables\Supplemen Data Collection Results 120202.xls

#### Table 4-2 Soil Vapor Field Duplicate Analyses October 2008 Kenilworth Park Landfill

| Sample         | Date       | Sample Methane<br>Concentration (ppmv) | Field Duplicate Methane<br>Concentration (ppmv) | RPD  |
|----------------|------------|----------------------------------------|-------------------------------------------------|------|
| KPN-JCO-SV-07S | 10/17/2008 | ND < 10                                | ND < 10                                         | 0%   |
| KPN-JCO-SV-09S | 10/17/2008 | 37,000                                 | 39,000                                          | 5.3% |
| KPS-JCO-SV-07S | 10/17/2008 | 89,000                                 | 90,840                                          | 2.0% |

Notes:

ND < ## = Compound not detected in sample above the laboratory reporting limit, limit provided.

#### **Definition of Terms:**

RPD = Relative Percent Difference X1 = sample concentration X2 = duplicate concentration

# Equation: $RPD = \left| \frac{X_1 - X_2}{(X_1 + X_2)/2} \right| 100\%$

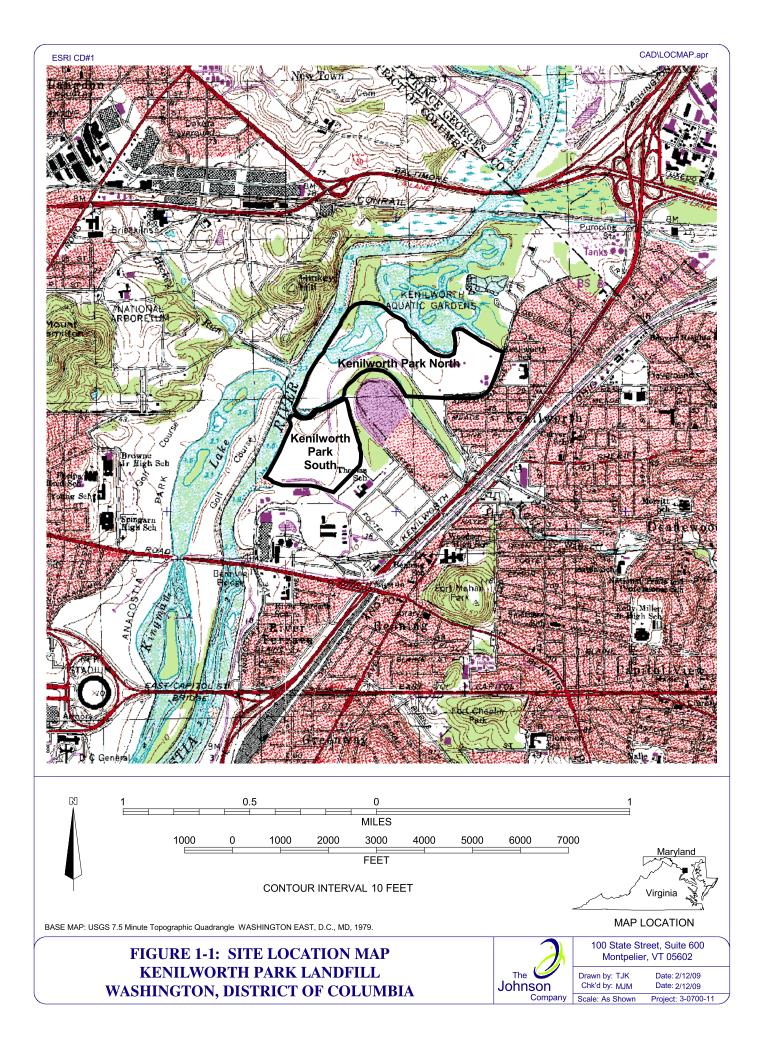
#### Table 4-3 Surface Soil Field Duplicate Analyses October 2008 Kenilworth Park Landfill

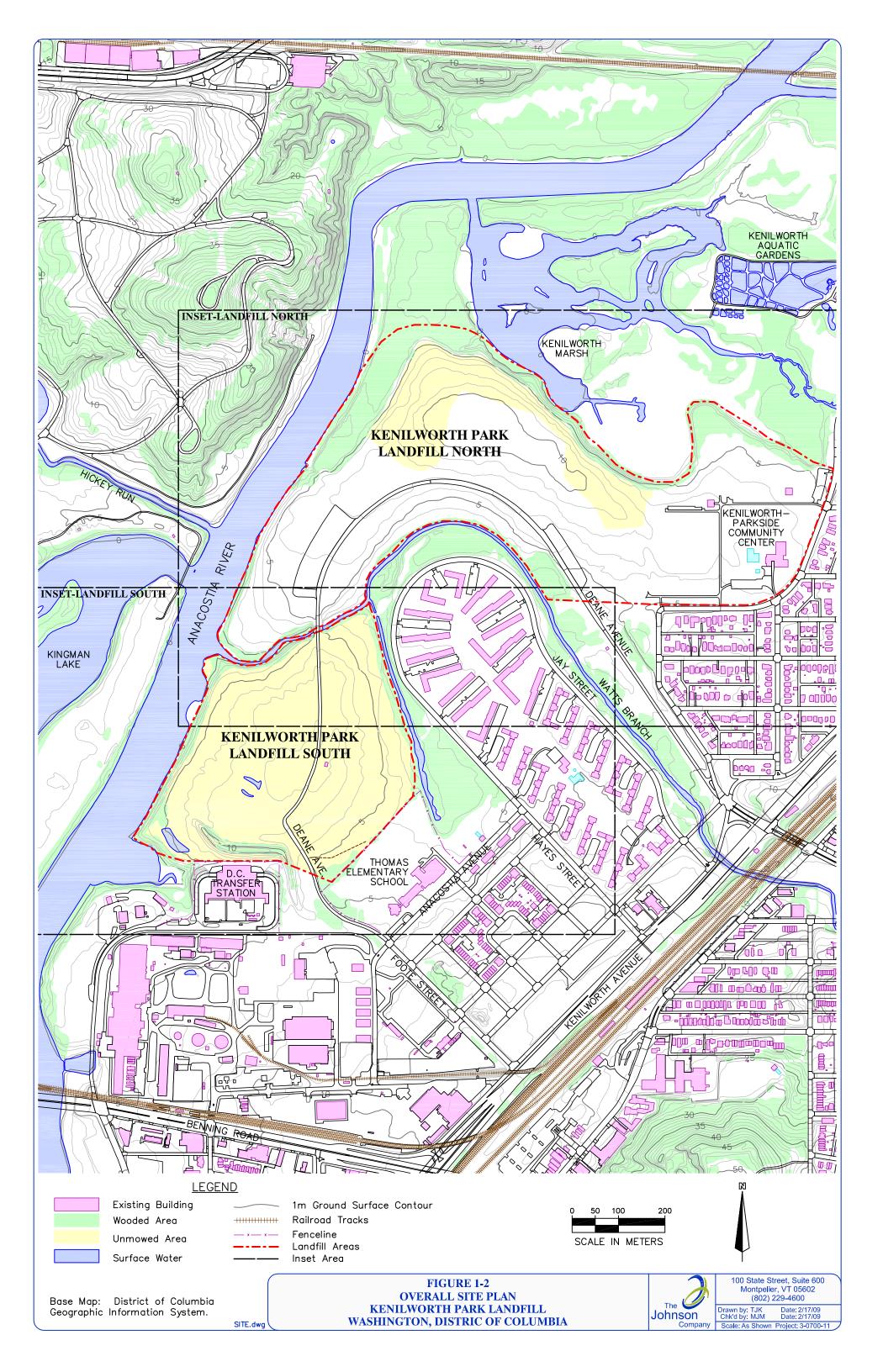
|               |            | pH (standard units) |           |       |        | TOC (mg/kg) |       |
|---------------|------------|---------------------|-----------|-------|--------|-------------|-------|
| Sample        | Date       | Sample              | Duplicate | RPD   | Sample | Duplicate   | RPD   |
| KPN-JCO-SS-07 | 10/14/2008 | 6.74                | 6.44      | 4.6%  | 37,200 | 50,100      | 29.6% |
| KPS-JCO-SS-10 | 10/15/2008 | 7.29                | 7.27      | 0.27% | 3,940  | 3,700       | 6.3%  |

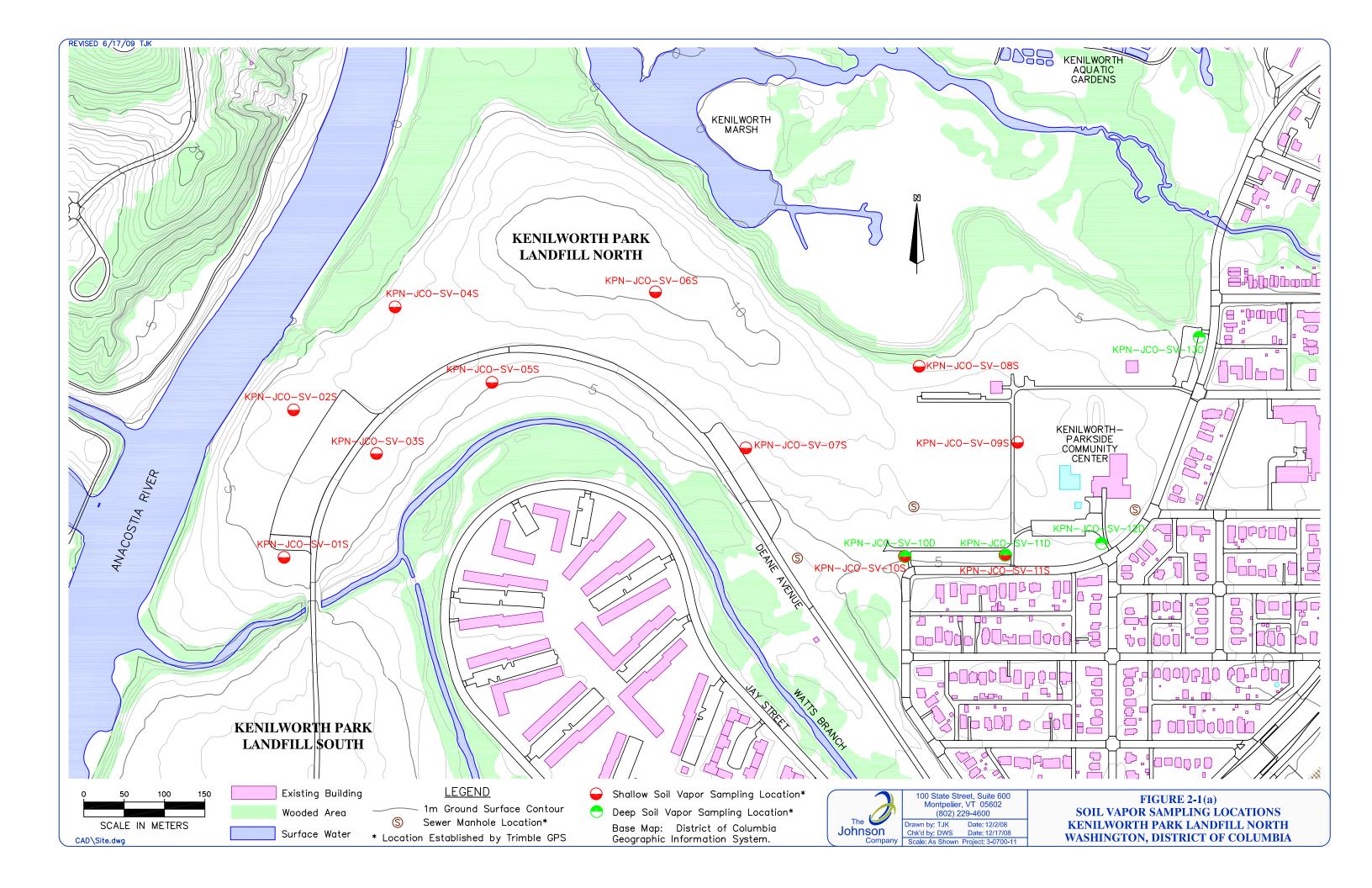
Notes:

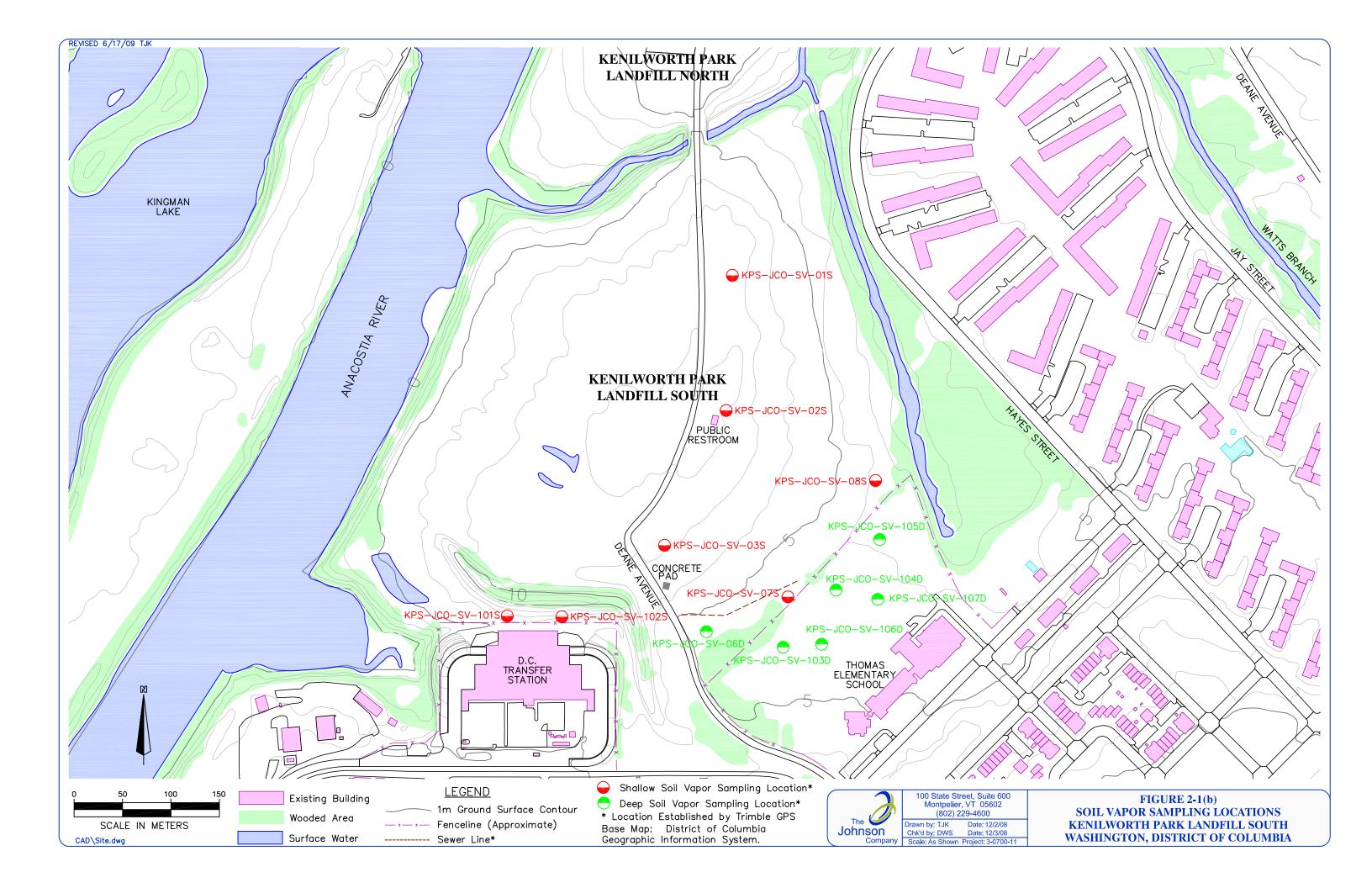
Definition of Terms:

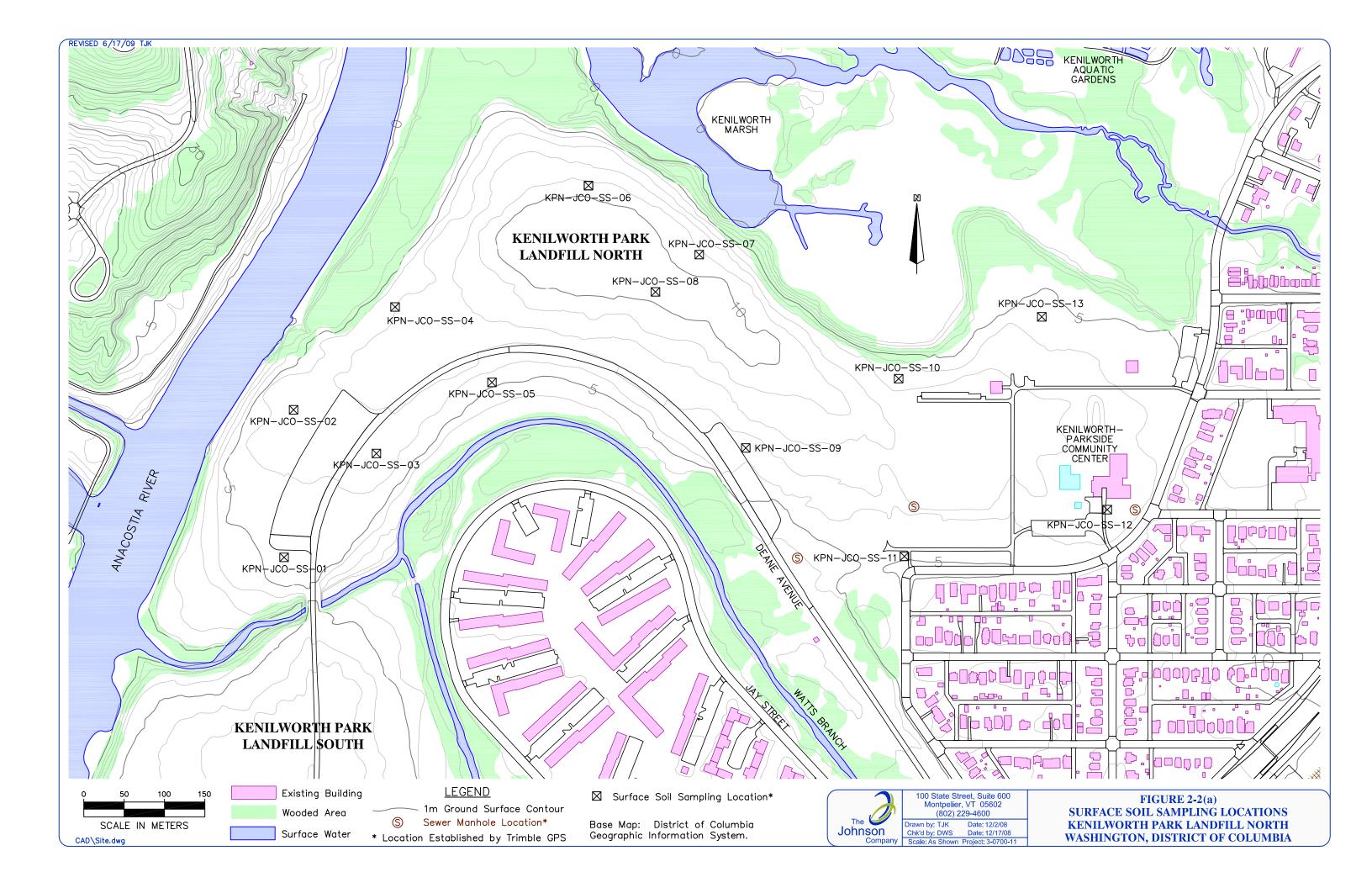
#### RPD = Relative Percent Difference

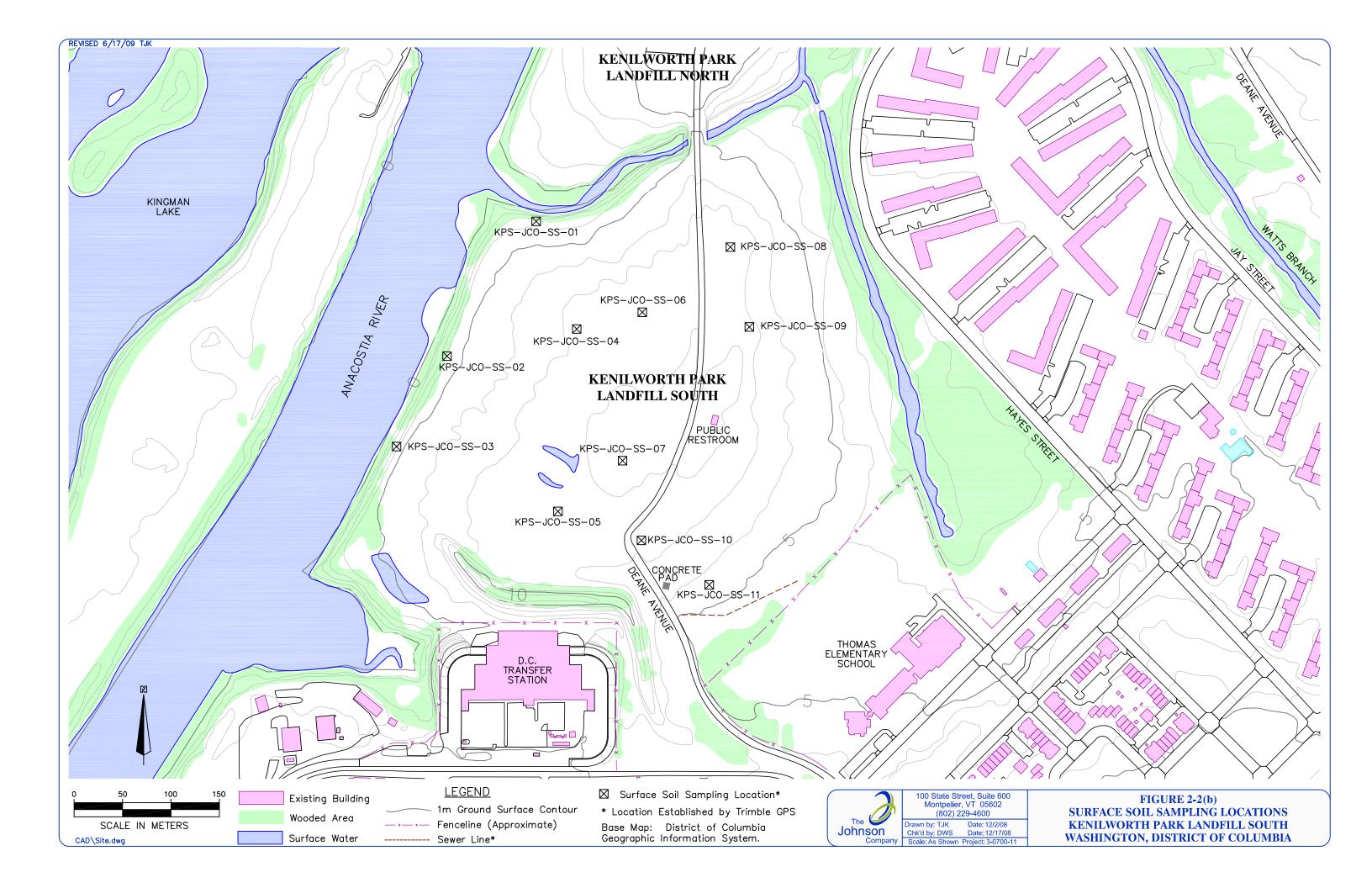

X1 = sample concentration

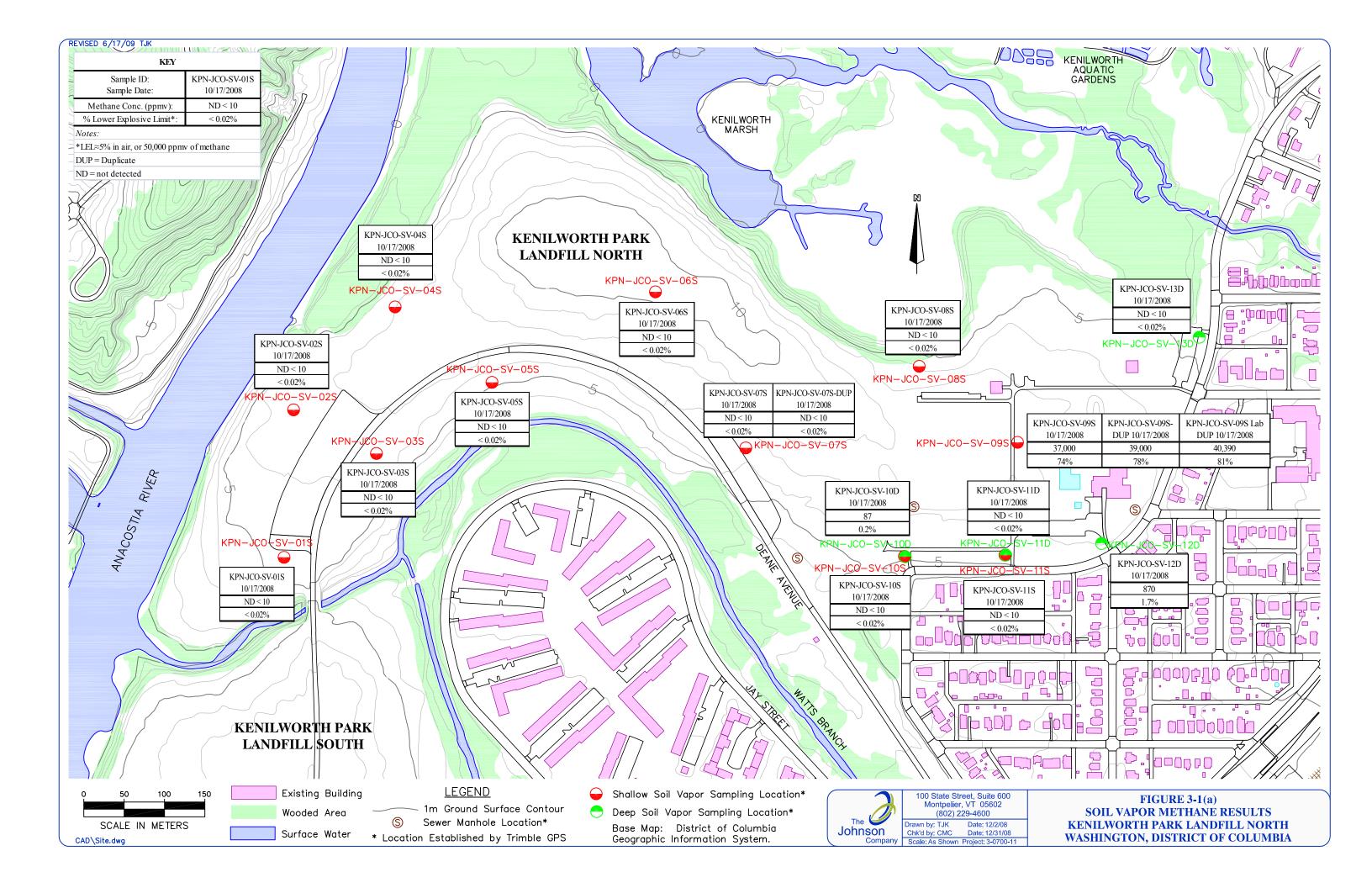

X2 = duplicate concentration

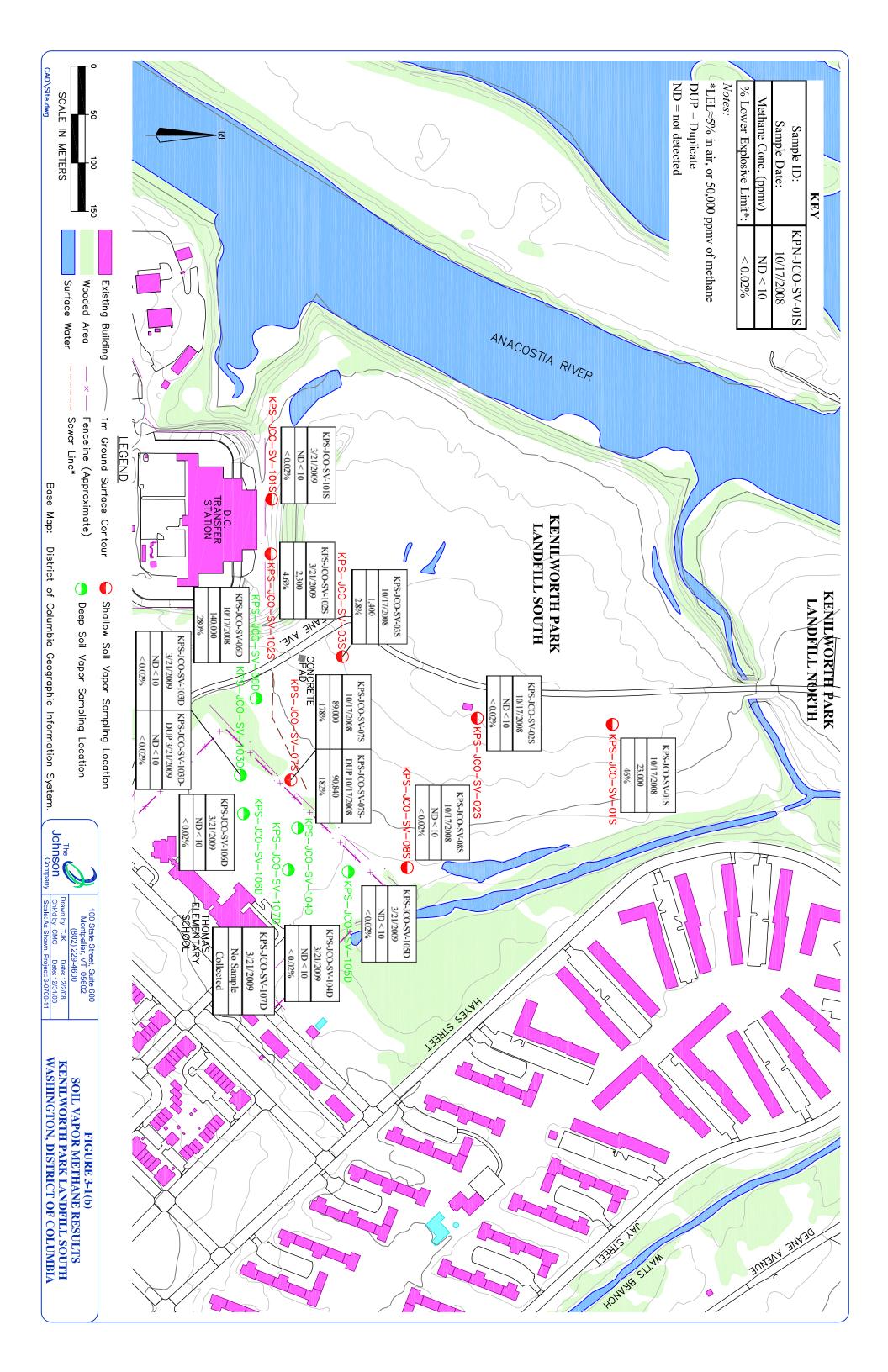

| RPD = | $\frac{ X_1 - X_2 }{(X_1 + X_2)/2}$ | 100% |
|-------|-------------------------------------|------|

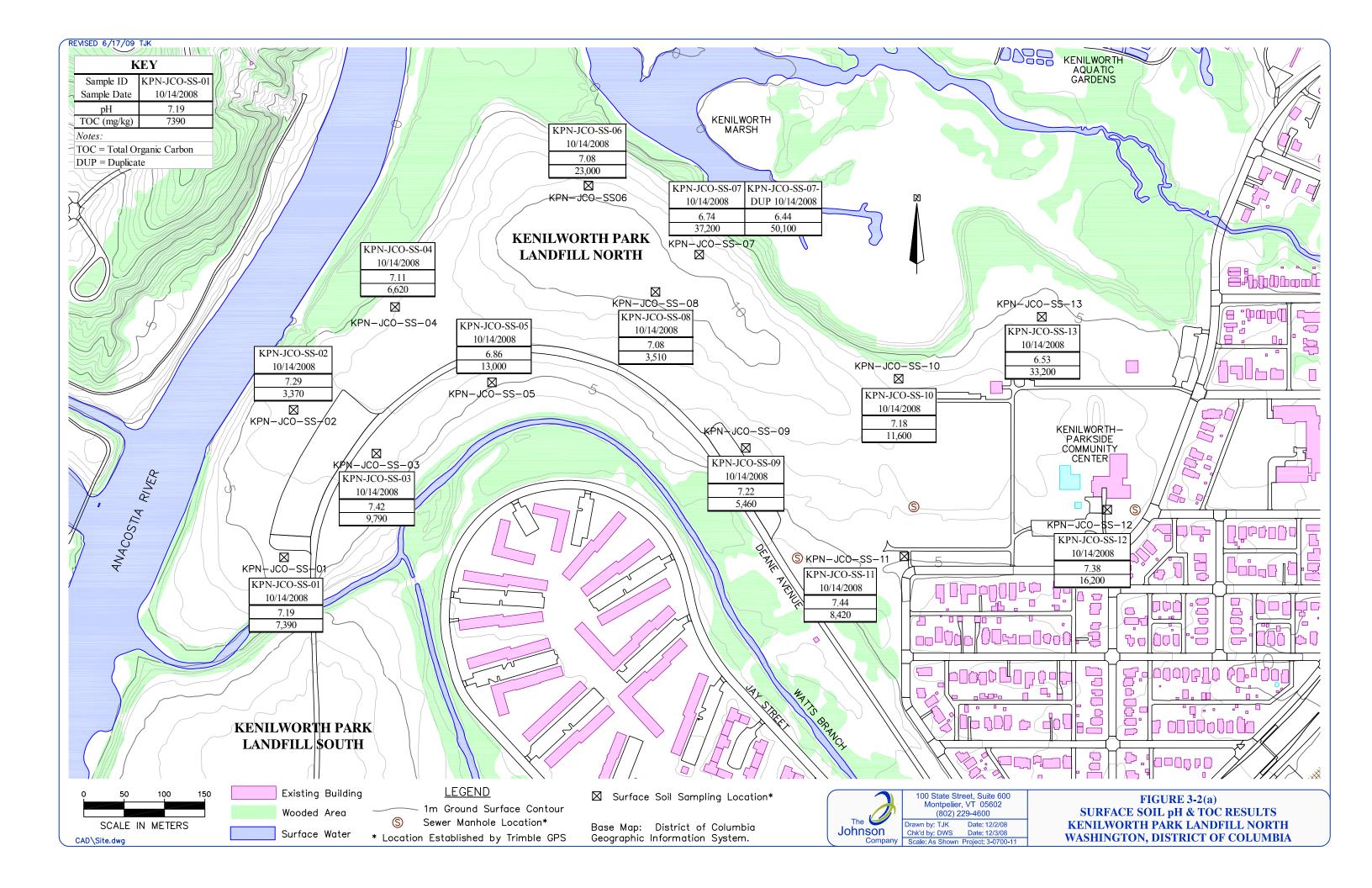

Equation:

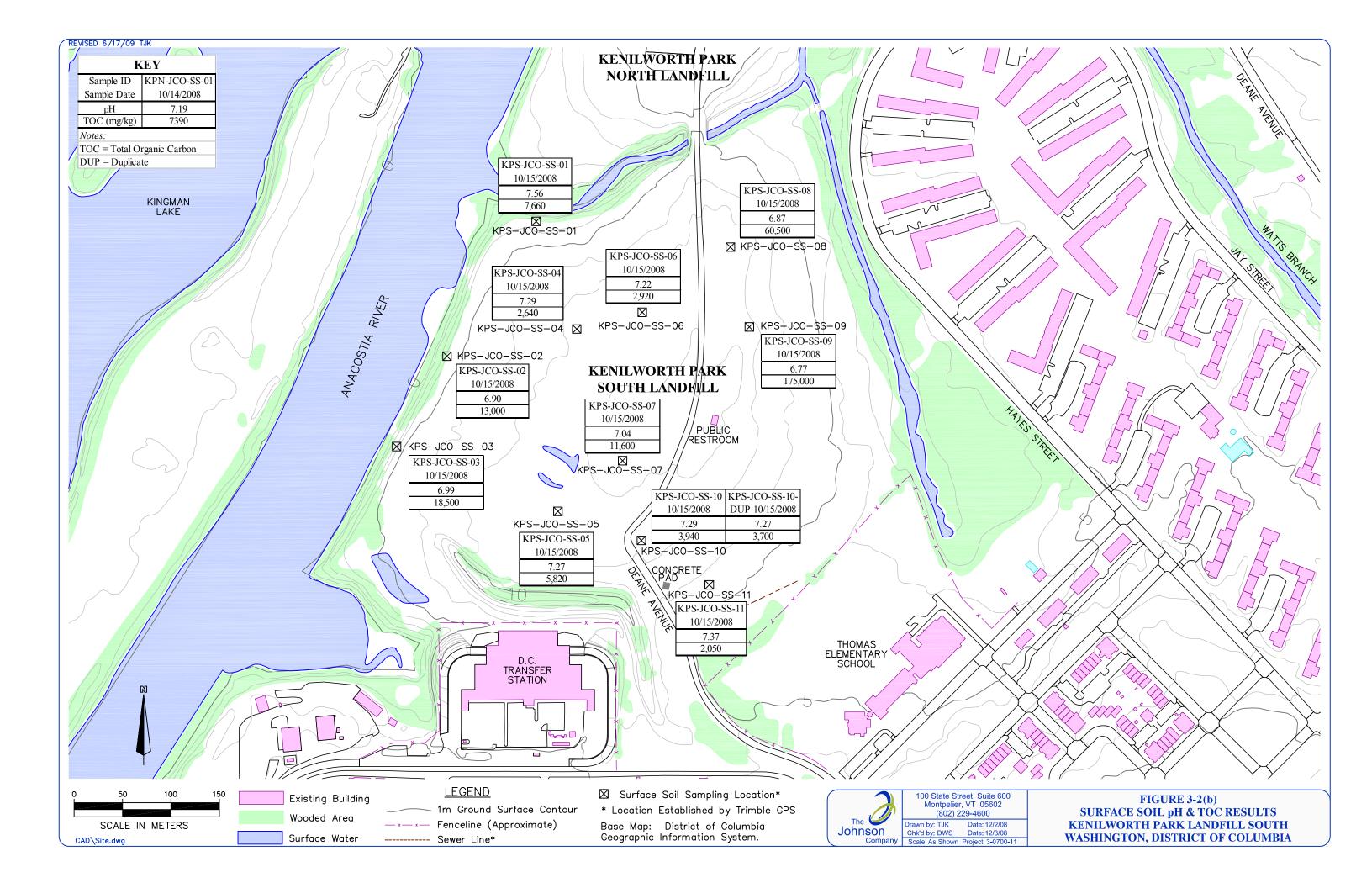

FIGURES

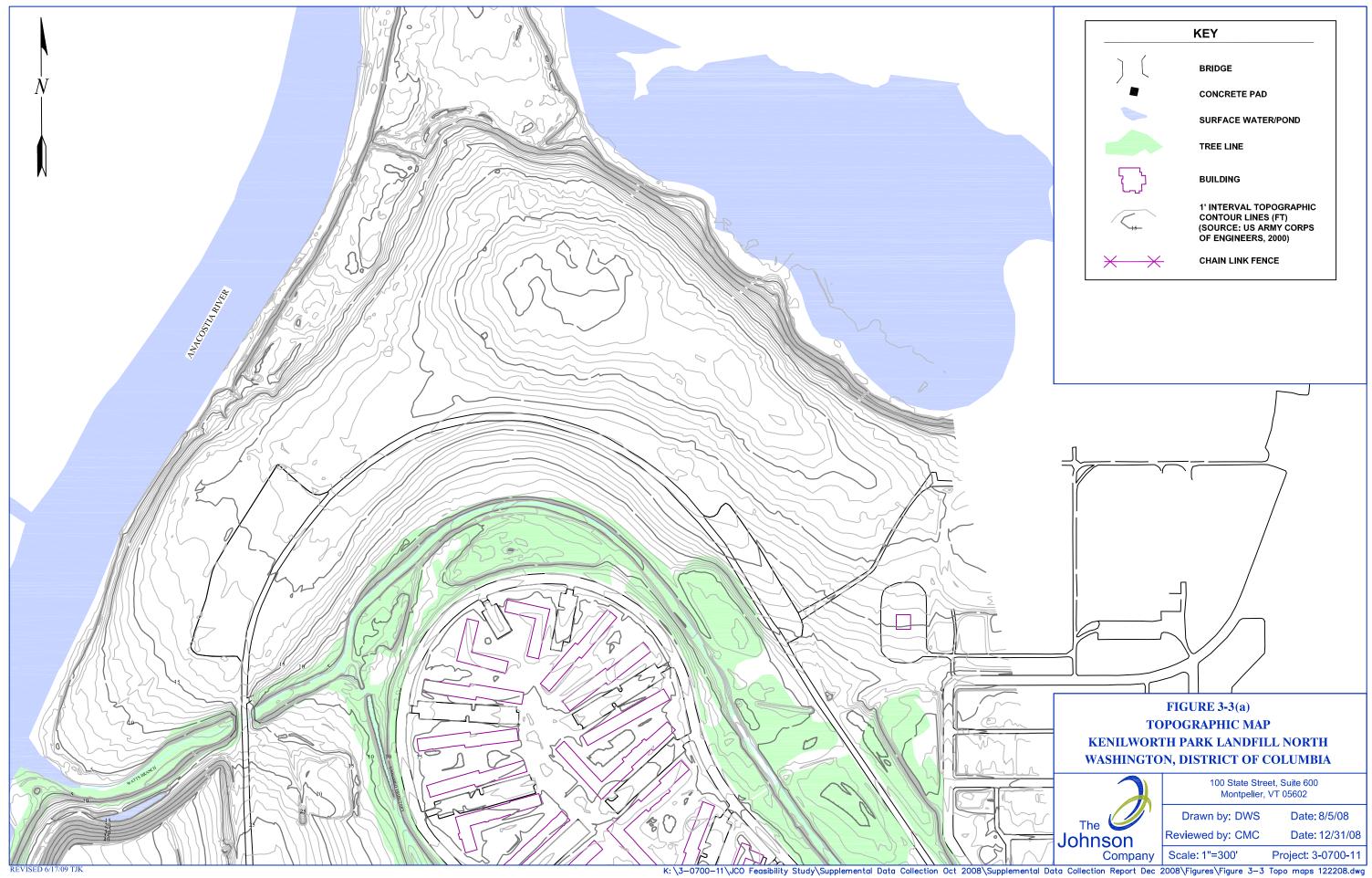


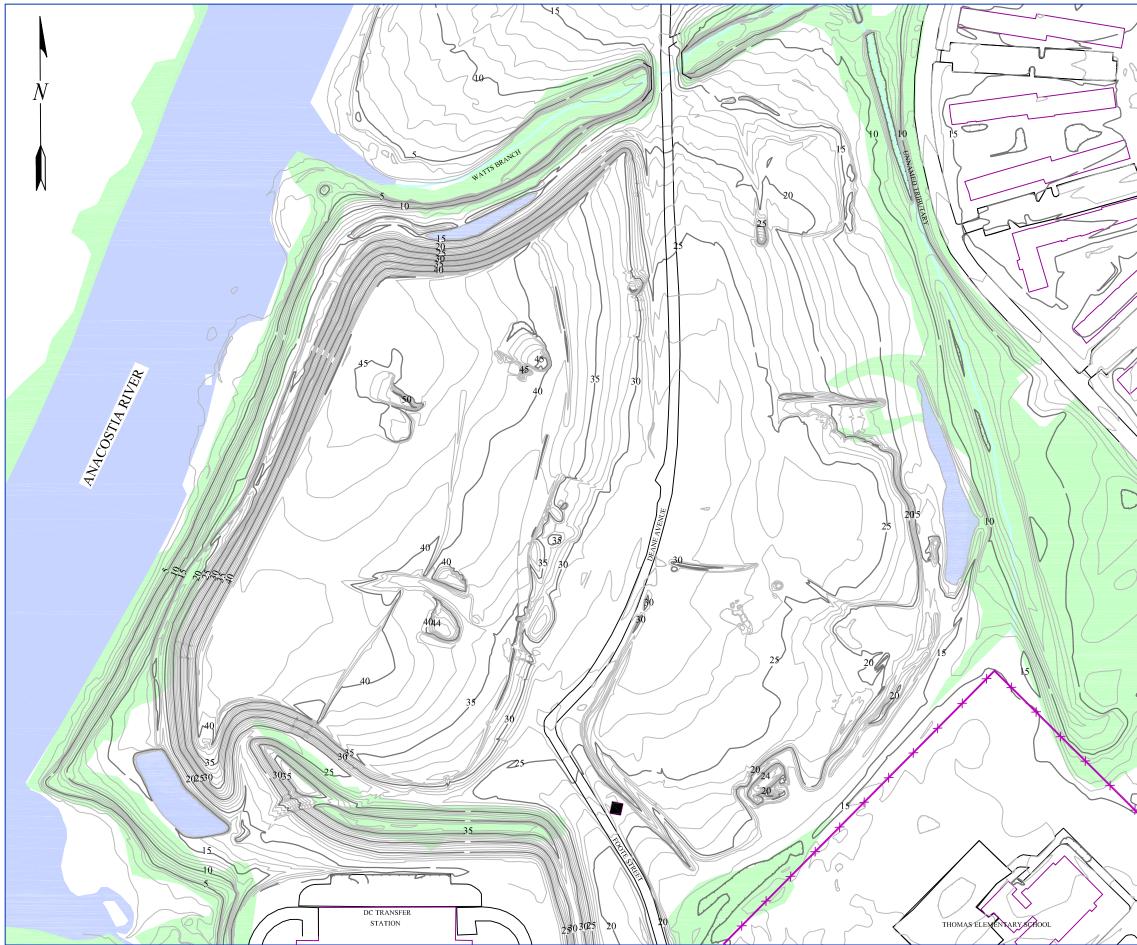



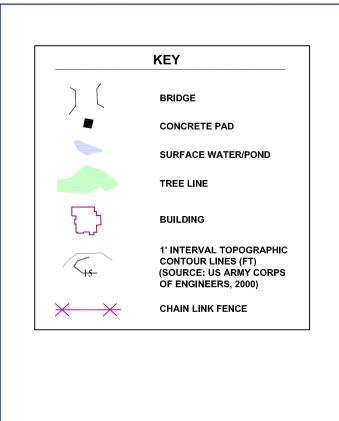














#### FIGURE 3-3(b) **TOPOGRAPHIC MAP KENILWORTH PARK LANDFILL SOUTH** WASHINGTON, DISTRICT OF COLUMBIA

100 State Street, Suite 600 Montpelier, VT 05602 Drawn by: DWS Date: 8/5/08 The Reviewed by: CMC Date: 12/31/08 Johnson Company Scale: 1"=200' Project: 3-0700-2

## APPENDIX 1 DAILY LOGS AND FIELD NOTES (OCTOBER 2008 AND MARCH 2009)

THE JOHNSON COMPANY, INC. DAILY LOG Site : Kenilworth Park Landfill, Washington, District of Columbia Page: / Date: 16/14/2008

Time the field work started: D7:00

Time finished: 16:30

Meteorological conditions and changes in these conditions: Hand Augering very Difficult, In hardpan soils BO°F Hot/HUMID, U. little change Names of field personnel: D. Thomas Osborne D. Joel Behrsing: D. NPS Staff: Other (list):

General Description of Work Completed:

Install Shallow Yapor points (SV-01-09) Collect sortice soils.

Location and description of the samples and sample sites including site sketches or diagrams (add page if required) HPIN(s, te only (see Figures 4.1(vP), 44.3(ss))

| Sample Matrix | Sample Name or Range of Names | COC Number |
|---------------|-------------------------------|------------|
| Soils         | 14 x JCO-55-01-13 (KPN)       | 8223       |
| 50715         | + 1-Duplicate sample "        | 8224       |
|               | , , ,                         |            |
|               |                               |            |
|               |                               |            |
|               |                               |            |
|               |                               |            |

Record of any field measurements made (unless otherwise recorded on applicable field sheets) Cee field sheets,

Calibration and decontamination procedures and/or adjustments (unless otherwise recorded on applicable field sheets)



| THE JOHNSON COMPANY, INC.<br>Site : Kenilworth Park Landfill, Washington, District of Columb<br>Date: /0/15/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DAILY LOG<br>ia<br>Page: ( |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Time the field work started: 7:00 Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e finished: 5 ; 3 0        |
| Meteorological conditions and changes in these conditions:<br>Mostly Sunny and Ast in Affnorn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |
| Names of field personnel:Image: Image: Image | 1:15-5:30 Geoprobe Op.     |
| Visit by Arlene Weiner and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Shephim                    |
| General Description of Work Completed:<br>CKPS collect surface soil surples and<br>construct KPS. SV-01 - SV-03 hard<br>CKPN CUS truct SV-01 - SV-03 hard<br>CKPN CUS truct SV-00 + SV-03<br>Location and description of the samples and sample sites includin<br>(add page if required)<br>See Figures in SAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | aps locations (ss only)    |

| Sample Matrix | Sample Name or Range of Names | COC Number |
|---------------|-------------------------------|------------|
| 50:1          | KPS-500-55-01 - 5511          | 8225       |
|               | and Dype                      |            |
|               |                               |            |
|               |                               |            |
|               |                               |            |
|               |                               |            |
|               |                               |            |

Record of any field measurements made (unless otherwise recorded on applicable field sheets) feel field sheets

Calibration and decontamination procedures and/or adjustments (unless otherwise recorded on applicable field sheets)

| THE JOHNSON COMPANY, INC.                                                                  | DAILY LOG              |  |
|--------------------------------------------------------------------------------------------|------------------------|--|
| Site: Kenilworth Park Landfill, Washington, Distric<br>Date: $\frac{0}{16} \frac{2008}{5}$ | Page:                  |  |
| Time the field work started: $1 \cdot \sigma$                                              | Time finished: 2 : 3 0 |  |

Meteorological conditions and changes in these conditions:

Names of field personnel: Thomas Osborne □ NPS Staff:

D Joel Behrsing: Other (list):

General Description of Work Completed: Purge SVs w/ nulli sas meter Build KPS.JCD.SV 07 408; collect TCLP metals GPS all KPN locations, Location and description of the samples and sample sites including site sketches or diagrams (add page if required) Sand KPS 5Vs See FSR figures of spoil from KPN Some (add page if required) Some KPS SV's SRE FST figures

Set IA summais @ Rec Center @ 20:0000 19:50

| Sample Matrix | Sample Name or Range of Names | COC Number |
|---------------|-------------------------------|------------|
| 501           |                               | 8228       |
| Sample        | Composite KPN 1               |            |
| 10mposite     |                               |            |
| from 5gel     |                               |            |
| loveket       |                               |            |
| IDW From KPN  |                               |            |
|               |                               |            |

Record of any field measurements made (unless otherwise recorded on applicable field sheets) see field sheets

Calibration and decontamination procedures and/or adjustments (unless otherwise recorded on applicable field sheets)

 THE JOHNSON COMPANY, INC.
 DAILY LOG

 Site : Kenilworth Park Landfill, Washington, District of Columbia
 Page:

 Date: [0/17/03] Page:

 Time the field work started: 6:30 Time finished:

 Meteorological conditions and changes in these conditions:
 16:15 

 Meteorological conditions and changes in these conditions:
 16:15 

 Names of field personnel:
 I Joel Behrsing:

 In Thomas Osborne
 I Joel Behrsing:

 Other (list):
 Other (list):

General Description of Work Completed: collect 3.2 L from all SV's and 3 Dopes

Location and description of the samples and sample sites including site sketches or diagrams (add page if required)  $\zeta_{ee} = \int_{1}^{1} \int_{1}^{1}$ 

| Sample Name or Range of Names     | COC Number                                                                                                       |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------|
| KPN-JCO-SV-01-07 40700P           | 8226                                                                                                             |
| KPN-JCO-JA-01 4 -01 DUP           | 8226                                                                                                             |
| KPN-JCO-SV-08: -09:-09DUI         |                                                                                                                  |
| -10 D; -10 5; 11 D; 115; -42; -13 | 8227                                                                                                             |
|                                   |                                                                                                                  |
| KPS-JO-SV-01; -02; -03:06         |                                                                                                                  |
| :07; 07 DUP:08                    | 8228                                                                                                             |
|                                   | KPN-JCO-SV-01-07 40700P<br>KPN-JCO-JA-01 4-01 DVP<br>KPN-JCO-SV-08; -09:-09001<br>-100; -105; 110; 115; -12; -13 |

Record of any field measurements made (unless otherwise recorded on applicable field sheets)

Calibration and decontamination procedures and/or adjustments (unless otherwise recorded on applicable field sheets)

The Johnson Company, Inc. 100 State Street, Suite 600 Montpelier, VT 05602

|                   |             | PID CALIBR   | ATION SHEET                           |                                             |
|-------------------|-------------|--------------|---------------------------------------|---------------------------------------------|
| Equipment ID: M   | ini Roe 300 | Serial # 592 | -000284                               | Lamp: <u>/0, 6 eV</u>                       |
| Brand of Standard |             | Spec Air     |                                       |                                             |
| Lot #             |             | DOBOZB       |                                       |                                             |
| Expiration Date   |             | 7/10/09      |                                       |                                             |
| Date              | Time        | Initials     | 100 ppm<br>Isobutylene<br>Value (ppm) | Site Background Value (ppm)                 |
| 10/14/08          | 7:15        | TRO          | 100 ppm                               | Zoro Atr (Fresh) = 0.1                      |
| 10/16/08          | B:30        | TRU          | 100 ppm                               |                                             |
| 10/17/05          | 7:w         | TIN          | 100 ppm<br>100 ppm<br>100 ppm         | <u>····································</u> |
|                   |             |              |                                       |                                             |
|                   |             |              |                                       |                                             |
|                   |             |              |                                       |                                             |
|                   |             |              |                                       |                                             |
|                   |             |              |                                       |                                             |

F:\STANDARD\JCO Forms\CALIBRATION SHEET 2.doc

1 5.0700-11 NPS. Newslawsth 02 19.4% KPN SV bevelop COL 1.0% <u>V.P. F.D. C.N.4</u> -02 0.7 m 0% 80/11/08 TRO/J.B. on site N7:00 7:30 P. Cloudy - 60°F Barumetric Pressure 50.21° Hy Calibrote Land F.11 gas 11) etc. 7:50 Landte Gem 2000 SN 6m 07061 HR Cel Jus So & CH4, 35% COz, Balance Nitrayan Lat # LTK 167-MM-EM Exp 10/10 Start dev. 57 V.P. KPN . 54.02 2 16:23 + 16:26 3 min. Barouchrie 30.09 in Hg Pib Background 0.07pm CH4 to So 2, 00 to 35% to 0, to 20.9% 2 12/14/02 NPS- HONILLINA 3.0700-11 16:20

0.8' FSL 42"rec B-24' red/brown samel/gald 2.2/02L ithe gless bottom 12° silly w/some ash 3 • 64 . 3:00 @ KPN·SCO-SN·11 · Deep 40:20 4' 0.8' FSL 42"rec 475 actual 5.3 - 6.1 Suralar B 3.3 5.1 - 9×3.000,00 10/15/08 3-0700-11 NPS -17001 / Lunity 2' drive receiver 16" pop 2" sime ach fruen 2" red clay 2:45 KPN. TCO. SV. (3 2:45 27 3044 B MW-11 drive 4' 28" recovery reddizh sond/Stravel. brighter w/ scoth server set 6.0 - 5.5 sart prat to 5.0' zartaste to 4.3' questa rock Sand Pack 6.0 505 - 5.7 15, 15, 1FSL 6-5.5 18" recovery reddish send Screet ちん drive 4' 44" recovery Sed/brown savel/gravel coarce 2 12" and 30" ~ 2.3" bank Go to KPS gate @ Foote St. chick aut Mus utility marks 4-6.5' Z.S' 30" recovery Fire reddish sard 11/00 Cloudy ~ 65°F NPS-Nomiluma RIDISO8 A GPS File name Screen @ 6.5 - 6.0 BGS Colibrate Land Pill gas meta CHy: 502, 002 = 352 02=20.72 Cel. LF Gas meter TOP Soul 5-8" Bentrik to +-10" ON S: Je J: OU TRO/S.B 21.12.02.12

TRO/J.B KPN-JEO - SV-10 Shelled 2' gouth P. SV-10 Perp 24' - 12: Seven 24'' - 12: Sevel 12" - 6" quarula 3 1-0×0-0 Naylee carchete in botton grawler B Screen 6.0 - 6.5' Seer 6.5 - 5.5' Junel 13 5.5 - 4.6 KTN-560.54.10 Deep 10/15/08 NPS. HEWIGHAN 10/15/08 top ~12" brown sitty lown 12 -18" brown, sitt some little grand 1 2 - 30" red/ home silty 5/G 0-12" 130 F.S.L. 12-24" Red Sand/gravel 24.56 Pr. B. / Pr.d bit 9 not / 5 lass 36"-42" red brow gravel 120/J.B ~3' contry of SUIL deep brown sound & Srvel some ash/slass Clean sand boftow -d" KPN . JCO- SV- 10 - Deep KPN . JCO - SV - 1/ Jbellow 2.0 - 1.5 1.5 - 1.3 1.3 - 0.9 4rne 30° Rc. 30" 42 4 200 ~13. rec 0-12 3-0700 -11 NPS - Kenilworth 12 - 24" Screen Drive 2 . 6.5 Guan bet 3:47 drive 4'

2-2/ont resultator nut strippet about soughe effort pecause count do both: < Acuum ~~~~~~ 7632 2993 4633 2989 KPN - 500 - 14/01 20P 1-002 0.2 KPN - JLO-14-01 serial Couristr " " Regulator serial the courster KPS. Herilworth 10/15/08 Stat STARA Dive 4' ~ 4' REC 0-10" Brown loomy 1210 1720/5-17 10-36" tan silty Same W/BEICK Chips 98" tince wood / ash ~2.3" (exe similar to let Hole DNN to 6" ~ 6" NECOVERI ~ 2" trach - popol /5 lass Viroyex (:15 - 5:30 ad" gravel brick chips offset and create XPS-JCO-54-06 He to 4' 8 NPS - Konstworth 3.0 700-11 10/15/08 24:45

120 Beek ground Use poin, Bow methic Room, 22.24 /4 KPN SV Dovelopment Rate 2500 m/min UB [220] CH42 CO22 Oug LELS Time Prime -3min Jairy Jui'n Swin 341 3. Hin 34.5 Stit Zmin Smin 3min 3min 24.17 3min Shin SEY Zmin Z ins 101609 A GPS File KPS 10:05 6:55 04:01 0.0 10:55 0.02 10:25 02:11 TRO/J.B 12:25 11:30 00:21 20012 13:00 01 5.3 7.3 14,6 0.5 77% 13:05 02 0.4 0.0 5.3 11,7 020 13:15 03 1,0 8.0 17.4 0.4 772 13:30 3.0700-11 11:45 ah:21 61:10 2:20 0.0 12:35 13:35 3:82 2:5/ 7.0 20 12.23 0.02 20.0 0.0 0.0 4.9 15.7 10.0 0.7 20.7 0.0 0.9 20,2 0.0 0.0 0,0 0.0 71 772 275 16.2 12.0 20.3 0.4 20.8 0.9119.0 3.1 <u>3</u> 115 1.0 0.0 1.4 197 Aron/inorth - KPS - Honi/worth 06 1. 3 69.5 30.0 0.1 5 3.6 2.4 0.0 13.6 0.02 12 0.1 0.02 13 0.1 0.0 0.0 4.0501 ( 4 dd , h wal 08 0. 6 0.0 point 1002 000 1 43.5 10/11/08 0.0/4.0/20 01 0.4 0.0 03/1.4/0.0 04 6.3 0.0 0565 0.0 040.9 0.0 21.5 KPS-JC0-JV 5 v 2.4" bottom ash mixed w/soil 34" sandy clay tun /red 10.30" TAN 102158 Sand Bran Stel - 16.12" 3-0700-11 KPS-JCO. SV. 00 w/ the Hes NPS - Kenilumth 1:15 Gran. B. TRO/ 3.13 7:11 r 10 east of samer Sand Lagor S 8-34-25 25 - 19 54-28 10/16/08 AL 21-02 01 - 2( 50" -100000 5 4.0 n bet

10/12 13 1 29.5 in (t) ~ (" 1tg 17 7-12 14 ور 10/16/28 ور TROJJ.B 29 H H VACUUM 4633 2989 KPN-500-54.81 Dup canistic # 7632 regular# 2933 (9:45 KPN-300-1A.01 NPS - Hon:/worth # regulate TIME cannistic to regulative # 574RT 19:50:51 yeral Heanis JMIT 19:50:51 22:1 1-0000 £1/01 START Spy ser שיי] Left Bucket u/Arlene Werne e Park Head guartors. TR0/J-13 composite soil T AY hand comp 6:00) NPS - Kenihuwih w/auger 3-0700-11 <u>8</u> 3300 2

| 45% humidity<br>45% humidity<br>45% humidity<br>3.2 L<br>3.2 |                               | *****         | ****   | ***** |          |          |        | 4    | **** |             |              |            |       |        |         |       |                  |       |   |  |    |    |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------|--------|-------|----------|----------|--------|------|------|-------------|--------------|------------|-------|--------|---------|-------|------------------|-------|---|--|----|----|--|
| KPU - Jon Lurth 10<br>3-0200-11<br>Summe # 1079<br>Summe # 1089<br>STAP 8:02<br>STAP 8:02<br>S                                                                                                                                                                                                                                                                                                                                                                                                                   | 48<br>17-13                   | 3.2 L         |        | CAC.  | το<br>Μο | :<br>M   |        |      |      | 3.2 L       |              | VAC        |       | w<br>• |         |       |                  |       |   |  |    |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 #1 / or                     | N<br>N<br>I   |        | 551   | 5:02     | 1:30     |        |      |      | در د        | •            |            | 8-1   | 8:41   |         |       |                  |       |   |  |    |    |  |
| 720/13.13<br>720/3.13<br>30.1 44<br>30.1 44<br>72.1<br>142<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NPS - Konilworth<br>3-0700-11 | FPN . 300.54. |        |       |          |          |        |      |      | KPN-500-5V. | Summe # 1089 | Res # 1306 | START | 5072   |         |       |                  |       |   |  |    |    |  |
| 720/J. B<br>190 F 45% WJ<br>30.1 H4<br>30.1 H4<br>112 J. B<br>112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | midity        |        | -     |          |          | mon    | 5.0  | ٥. ٢ |             |              |            | -     | ,<br>, | لر      |       | -                | .25   | ł |  | Ξ, | -4 |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N.A.                          | 15% hu        | H4     |       | 3.2 L    |          | <<br>Y | 36   |      |             |              |            |       | 3.21   | >       |       |                  |       |   |  |    |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TRO                           | 101           | 30.1   |       | .0       | 1        | INE    | 1:12 | : 36 |             |              |            |       | 2      | とう      | 1.4.1 | -<br>-<br>-<br>- | <br>& |   |  |    |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11-000                        | ``\s          | Baroon |       | 500.     | #<br>• • | \$2.#  | STAR | Stop |             |              |            |       | - 500  | 4 0 1 H | p (   | ŗ                | Ś     |   |  |    |    |  |
| 43.0700-11 Nrs 720<br>10/17/08<br>6145 63.40F<br>840046416 30.1<br>720<br>5700 54 13<br>5700 54 12<br>5700 54 12<br>50 56 12<br>50 50 56 12<br>50 56 12<br>50 56 12<br>50                                                                                                                                                                                                                                                                                                                                                                                               | 20%                           | 6:45          |        |       | - NJX    | 5.12     | Ľ      |      |      |             |              |            |       | NUV    |         | \$    |                  |       |   |  |    |    |  |

das da Masteria de esta

11 30 % レナン 720-328 3.2 L 140 YAC 3.2 ( 62 ~ 29 3.2 2 2mil しょい 9:38 9:53 0:40 51:01 السر 60:01 6.47 10/17/08 20 - JCO - SV - 02 KPN- 300 . 5V. 04 FPN- 560. 54-03 5 1 0 13 1 0 13 1 1 0 13 1 +LO/ # www.s NPS - Kenilworth 3-0700-11 826 START 500 # mms 31.05 Stop + 145 start ō des teg ± Kes # 6.5 tob2-7RU/JT-B 3.2 L 29 " JAL : -3.2 L 242 24C 2.2 140 8:53 8:37 9:10 いくて 712 KPN.JCO - 51. 10 D £2.8 24:8 KPN JCO - 5V - 10 5 TIME KON-JCO-54-01 Summe # 0132 reg # 2860 5010 # 5010 \$ 2828 START 72857 574.87 Stop NPS - Kaniluwrth 3.0700-11 10/17/08 0124 1702 START Stop キャッショ #) 5 fulty 9

| 1-16<br>1-16<br>1-1-16<br>1-16<br>1-16<br>1-16<br>1-16<br>1-                                                                          | とない                                                                                           | 14<br>20"(1,<br>2"                                                                    |                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| 10/17/08<br>11/12/5-3<br>14:23<br>14:52<br>29                                                                                         |                                                                                               | 4                                                                                     | 2                                                                     |
| milweth<br>"<br>e - 54 - 08<br># 0112<br># 2863 [jme<br>540 14:23<br>540 14:52                                                        | N-Jco-SV-09<br>Summa # 0128<br>Reg # 2870 Time<br>Stert 14:57<br>Step 15:16                   | 1724 - Jee - SY - 09 Dup<br>Summa # 0135<br>Reg # 42 Time<br>Stat 14:59<br>Stat 15:16 | OFF SITE 4:15                                                         |
| NPS- Hanilwurth<br>3-0700-11<br>APN-JCO-SV-08<br>Summa # 0112<br>Reg #2863 1<br>Stert 11<br>Stert 11<br>Stop 1                        | HPN-Jco-SV-09<br>Summa # 0128<br>Ref # 2870 Time<br>Start 14:59<br>Start 14:59<br>Start 14:59 | 1(PN - Jeo - SY - 09 D<br>Summa # 0135<br>Reg # 42 Time<br>Stat 14:59<br>Stat 15:16   | OFF                                                                   |
| 7-20/J-9<br>VAC<br>201<br>301                                                                                                         | 7 N C -                                                                                       | <u>ب</u>                                                                              | × .                                                                   |
|                                                                                                                                       | 7.46<br>(3:44<br>(4:02                                                                        |                                                                                       | 1 000<br>4.45<br>32:45                                                |
| 51 - 05<br>51 - 05<br>71.05<br>70: 47<br>70: 63                                                                                       | 50.06<br>                                                                                     | - JCO . SV. 07<br>DIOS<br>BU TIME<br>STRF: 13:56<br>STRF: 14:15                       | JCO - SV - 07<br>0106<br>1 TIME<br>13:56<br>17: 17:15<br>570 P: 14:15 |
| - / eni/unth<br>- 11<br>- 120 · 51 · 05<br>- 1077<br>- 1077<br>- 1077<br>- 10<br>- 10<br>- 10<br>- 10<br>- 10<br>- 10<br>- 10<br>- 10 | ÷ F                                                                                           | •                                                                                     |                                                                       |
| KPN-<br>KPN-<br>KPN-<br>KPN-<br>KPN-<br>KPN-<br>KPN-<br>KPN-                                                                          | KPN -<br>Start +<br>Start +<br>Start +                                                        | KPN<br>Summett<br>Reg #                                                               | KPN -<br>Surret<br>Fest 6                                             |

TRo/JB KPS-JEO - SV OT METT. N. S. Funce 29. 29. 31 120 10/17/06 EPS-JCO - 5407 DUP 76-51 7:55 84:21 : Jals 577427: 12:29 しょう 4 LANTI 1 40 11 CAN KPS . JCO - 5406 Res # 2861 KPS 12:00 Summe # 1073 Ras # 080 52000 \$\$ 1086 Fes # 049 START: 5TOP: START : : Jais to Marshay 3-070-11 1-0/11/01 2

23 31 KPS- 500-54-08 ~65 N. & Fance 7.4C 30" " " VAC 29.5 80/11/01 292 71257 12:14 12:35 7145 12:58 13:26 7125.04 605.500.50.03 50000 # 1003 KPS - JCO - SV - 02 5, max # 1084 61:51 71000 12 PS - JCO - 51 - 01 Suma # 0/66 111 - Iceni Lumin J. O few-11 1312 Start: STAR T. Stop: summa # 1072 Res # 2962 : Lats - TAPPI Ry # 016 :1225 4 AAA18 neadle e -2.5 R 15 # Ç,

| THE JOHNSON COMPANY, INC.                                         | DAILY LOG |
|-------------------------------------------------------------------|-----------|
| Site : Kenilworth Park Landfill, Washington, District of Columbia |           |
| Date: $3/20/09$                                                   | Page: /   |

Time the field work started: 9:30

Time finished: (9:00

Meteorological conditions and changes in these conditions:

Names of field personnel:

☑ Thomas Osborne
 ☑ Joel Behrsing:
 ☑ NPS Staff:
 Other (list): Vironex (Geoprobe Operator)
 Soe Borne H (to un lock gate)
 i5:05-18:00

General Description of Work Completed:

Hand Auger and core (wseeproberia) to install sail vapor points.

Location and description of the samples and sample sites including site sketches or diagrams (add page if required) KPS - 2 points along fence line w/ DC Transfer Station, Five points behind Thomas Elementary School on NPS property

| Sample Matrix | Sample Name or Range of Names | COC Number |
|---------------|-------------------------------|------------|
| Soil Gas      | KPS-JCO-SV-1015 +1025         | 7047       |
| ti ii         | KPS-JE0-SV-1030-1070          | 7047-      |
|               |                               |            |
|               |                               |            |
|               |                               |            |
|               |                               |            |
|               |                               |            |

Record of any field measurements made (unless otherwise recorded on applicable field sheets) See Field Pata sheets

Calibration and decontamination procedures and/or adjustments (unless otherwise recorded on applicable field sheets)

See Field Pata sheets

· · · · ·

| THE JOHNSON COMPANY, INC.                                         | DAILY LOG |
|-------------------------------------------------------------------|-----------|
| Site : Kenilworth Park Landfill, Washington, District of Columbia |           |
| Date: $3/21/09$                                                   | Page: (   |

Time the field work started: 3:30

Time finished: 14:30

Meteorological conditions and changes in these conditions:

Names of field personnel:

| Ø | Thomas Osborne | □ Joel Behrsing: |
|---|----------------|------------------|
|   | NPS Staff:     | Other (list):    |

General Description of Work Completed:

Purge goil vapor points. Collect 6L Summe conister samples from 6 locations

Location and description of the samples and sample sites including site sketches or diagrams (add page if required)

See figure included w/field notes/Field data sheets

| Sample Matrix | Sample Name or Range of Names | COC Number |
|---------------|-------------------------------|------------|
| Soil Gas      | kPS-JCU-SV-1015+1025          | 7047       |
| 61 × 1        | KPS-JCU-SV-103D-107D          | 7047       |
|               |                               |            |
|               |                               |            |
|               |                               |            |
|               |                               |            |
|               |                               |            |

Record of any field measurements made (unless otherwise recorded on applicable field sheets)

See Field Deto sheets

Calibration and decontamination procedures and/or adjustments (unless otherwise recorded on applicable field sheets)

Keep Arlene uphodada of site progress Alprilanth Hguatic Met Sue Burnett =/ NPS at intraction Stove Syphax (202) 359-1717 (C) about Site access, Will need to curtacted Arlene Weiner (443) 996-0743 (c) Buing locations and acess issues. All Clear for efter school start at Thurss Elementary Stepped in at Thumas Elementary to talk uf principal Ruth Barnes # (202) 724-4593 Juo walke d w/Ruth to discuss Date 3/2409 Weather: clear 40°F, Slight Breeze of Furte St. + Anicasi kia Ave to Review playned to eghons 3-070-1 Location Ren' / wor the Forth DC (202) 426-6905 Parte or Pebbic un lock gate. BN 517e 9.30 Project / Client MPS 021 200 B

4-6 2.0' Pee, 0-5' Dr 13 musst f. Ms. 0.5 - 8.04 Toursh - Neh sunt low. Benton'te 4-6' Hydrote Setscrev 5.5 - 5.0' Bgs Sut 25-4.0' Bent, 1.0-2.5' Put set Total hole depth 1.9 Bas Screen Set 1.3 - 1.6' Sand to 1.1' Bas Screen Set 1.3 - 1.6' Sand to 1.1' Bas Bent. to Out' 1895 Bent. to Out' 1895 Bent. to Out' 1895 Bent. to Out' 1895 PID VP. Screen Out pper max Sand to give to Stap. In the hol Dr Br - 13 fuck 125 Location MEnilwerth Port DC Date 3/20/09 Let Box Liel Beloen Sool Purged Veper Screen W/PID AId Screen Set 1.0- 1.5 1355 Sand to 0.0 355 Hydraded Back billed af Native Sails Hydradee old'Storn der 25 50 Wh 3-0700-11 Viranics cusite 13:05 Setup at 1st location Project / Client 0-10 KPS-JCO-SV-1015 Westerd of BCTrensfor Station & 20' N. of Pence line 0-04 Br moist 51/14 fs. Topsail 0.4-19' Br-crange Sili, fs tgev Brich frags (Pill). 1/13 - Jeo - 54 - 1025 E. end of DC Trensfor Studion 2 15 N. of fonce 1:ne O. o. 4 Bo moist Silty \$5. Litgen O. 4 - 1.5' (Bes Itr/Orange 2:17 1:145 Location Herry Hund & Fear, DC Date 3/20/09 Set up to start UP inclall Delmigd PID VP. Screen O.Lpp- Max purged & 1.5 minutes 100 ppm Spon ges = 100.9 ppm OVM Beek grand 0.0 ppm Project / Client 11/25 3-0300-11 Calibrate PID 45N

0-4' 2.0' [cec. 50ft 0-0.5' [3r moist 5:// Sume Rs. Tegsoil. 0.5 - 1.0 Orange moist fs t grv. 1.0-1.4' Dr Br moist Six t 9ngless chands 1.4 - 12 Tan/Br moist fs + 5-14 1.1+ grv. 1.6-2.0' Neit Brich + 3/act 1/2h. 4-6 - 2.6 Pec 0-0.2 Fed murst PS-MS + gless chips 0.2 - 2.2 Br - DrBr PS Litgru 2.2 - 2.6 31 aut muist PS - gru Screen 3.5-40' Sand to 2.8' Bent. to 40' Sand - 0.0'-1.0 W/Road Box 1, of for marking (Balan Sod Location Iconil worth Perk, DC Date 3/20/05 Se ft 3-0700-11 JSQN-NS-07E-SOL as h+S/ag. Project / Client NPS 0.4-0.9 Orang Moist/wet ms-PS. 51+C. 0.9 - 2.1 Cours - Degray Black Ash. Below Sod 0- 0.4' 3.3' Rec. 0- 0.4' 13r muist silt 1.7 AS. Tupsoil Location Newilworth Pork, DC Date 3/20/09 Farry glass Shards in bottom 0.05'. 2.1-I.7' Dr Br FS. 2.7-5.5' Gray Dr gary Black Ash + 4grv. White-gray wet/sat. Sand the Red Box cover 0.10' X Bentonite, breauler 1.0.2.5' 3-0700-11 - 3.2 Set Screen @ 2.7 -Send puch 2.5 - 3.3 HPS-JCU-SV-104D Project / Citent ///PS 6-4

Mps-Jeo-107D 0-4' E.7' Fee. 0-4' E.7' Fee. 0-5- 2.5' Orenge provist W15-85. 9540 0.75 1.05, 1.4-1.5' B/ Would Churks. 0-0.3' D.J. I. 4' Dr 151 - Bl. grv. Some Bl Conders 1.4-1. C" Dr 131 B- Mag. Location How i her with Park DC Dale 3/20/09 3-0700-11 TR 2.3-2.7 Black work Cinders and glass charols, 0.0ppm No VP Screen installed. Project / Client WPS 0.4- 1,0' Orange Muist PS 1: 7 gry SHC 1.0-2. X' Orgray Black Ash Mided W/ AS Agni 1: 7 gloss frags throughof 4-6' 2.2' Pec 0-0.6' Dr Br Muist AS-gry. gless Fragments 0.6-1.9' Dr B- Prorange FS 1.7gry 1.9-2.2' BI- white gray ash teindows Location Heniluwith Perk DC Date 3/20/09 3 Server 3,5-44,0' Sand Au Z. Z Bend. to 1.0' 1595 5 cond th 5 w Hps-Jw-SV-106D 0-41 2.7 Fec. 0-0.41 Br Musst Silt h+ fs. 1-0020.E Project / Client WPS

Location Homil worth Park DC Dale 3/21/09 Setur @ Vapor Fast APS-Jcc-SV-103D Duplicate Scumple collected. Purged Vapor screen before sample collection, Sce field sheets for golditional semple idormation and locotion Calibrate CH4 to 502 Calibrate CH4 to 502 Col bes - Spec Air Tine Env Lot # 008678 Exp Pate 12/4 11-0020-E S/N GMO7600 Sonamatric Prassure 30.35 M Weather Clear Mid 30's Calibrate Gain 2000 PIP Calibration 0 Bs. the 14:30 ON 5170 8:30

The Johnson Company, Inc. 100 State Street, Suite 600 Montpelier, VT 05602 Phone: (802) 229-4600 Fax: (802) 229-5876 www.johnsonco.com

|             |           |              | PID CALIBRATION SHEET           |                             |
|-------------|-----------|--------------|---------------------------------|-----------------------------|
| Equipment   | ID: PIP   | lorm #       | Serial #: 500 4 - 612           | 36 3 30 Lamp: 10.6 eV       |
| Brand of St | andard    |              | Pine ENV                        |                             |
| Lot #       |           |              | 20130 005026                    | ]                           |
| Expiration  | Date      |              |                                 |                             |
| Date        | Time      | Initials     | 100 ppm Isobutylene value (ppm) | Site Background value (ppm) |
| 3/20/09     | 11:00     | TRO          | 100.9                           | 0.0                         |
| 3/21/09     | 8:00      | TRO          | 101.0                           | 0.0                         |
|             |           |              |                                 |                             |
|             |           |              |                                 |                             |
|             |           | 1            |                                 |                             |
|             |           |              |                                 |                             |
|             |           |              |                                 |                             |
|             |           |              |                                 |                             |
|             |           |              |                                 |                             |
|             |           |              |                                 |                             |
|             |           |              |                                 |                             |
|             |           |              |                                 |                             |
|             |           |              |                                 |                             |
|             |           |              |                                 |                             |
|             |           |              |                                 |                             |
|             |           |              |                                 |                             |
|             |           |              |                                 |                             |
|             |           |              |                                 |                             |
|             |           |              |                                 |                             |
|             |           |              |                                 |                             |
|             |           |              |                                 |                             |
|             |           |              |                                 |                             |
|             |           |              |                                 |                             |
|             |           |              |                                 |                             |
|             |           |              |                                 |                             |
|             |           |              |                                 |                             |
|             |           |              |                                 |                             |
| FAUSERS     | WPD\CALIB | RATION SHEET | .doc                            |                             |

|                                                        |                                  |                                                                                   | U                                                                                                               | CHAIN OF CUS                           | JV RE                       | CORD         |                                      |                                         |                     |            | 1                       |                                          |
|--------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------|--------------|--------------------------------------|-----------------------------------------|---------------------|------------|-------------------------|------------------------------------------|
| Client / Project Name                                  |                                  |                                                                                   | Projec                                                                                                          | Project Location                       |                             |              |                                      |                                         |                     |            |                         | <br> <br> .                              |
| 1                                                      | 1                                |                                                                                   | See 20 all                                                                                                      | Stan Year &                            | 16                          |              |                                      |                                         | ANALYZES            | (0         |                         |                                          |
| Project No.                                            |                                  |                                                                                   | Field Logbook No.                                                                                               | lbook Nó.                              |                             | 1            |                                      |                                         |                     |            |                         | na an a |
|                                                        |                                  |                                                                                   | Chain of Cu                                                                                                     |                                        |                             |              |                                      |                                         |                     |            |                         |                                          |
|                                                        | and there are a supported in the |                                                                                   |                                                                                                                 |                                        |                             | 2112         |                                      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                     | \<br>\     |                         |                                          |
|                                                        |                                  | 10.<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | alcomological de la comological de la c |                                        |                             |              |                                      | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1   | 105                 |            |                         |                                          |
| Sample No. /<br>Identification                         | Date                             | Time                                                                              | Number                                                                                                          | Sample                                 | ole<br>ole                  | 1.11         | 2                                    | 151                                     | 1.4.                |            | REMARKS                 | S                                        |
| 15 Stor. V 24 H                                        |                                  | 1                                                                                 |                                                                                                                 | 14 1 20                                | 16:01                       | ×.           | 24                                   | 10782                                   | 2.6%                | te da en   | Sec. 140                |                                          |
| 15- Jun - 54 - 112                                     |                                  | 01:17                                                                             |                                                                                                                 |                                        |                             | ×            | 5                                    | 3070                                    | 6767                | -          |                         | ¥ ра.<br>195 гадар                       |
| 4201-15-215-514                                        | in vary                          | 61201                                                                             |                                                                                                                 | * • a <sub>65</sub> •                  | A                           | X            | ų<br>V                               | 0113                                    | 23.82               |            | al-Meridian             | • • V Inset                              |
| 115-360 - 5V-10- No                                    | to total access                  | 1 6 8 4                                                                           |                                                                                                                 | 11.5 <b>00 100</b>                     |                             | )er 1        | 14<br>14                             | 2 5210                                  | Z 5 6 5             |            | Pagladaaqaqa            | 24<br>*<br>****                          |
| 6 12 3 4 4 1 1 1 1 1                                   | ····                             | 12.21                                                                             |                                                                                                                 | rrit-run, shikara                      |                             |              | 200                                  | 5210                                    | 56                  |            | - my fra + r ann ann r  | • [<br>• • •                             |
|                                                        | 1.<br>                           |                                                                                   |                                                                                                                 |                                        |                             | ×            | 0<br>M                               | 0102                                    | 1306                |            | - de su a contra da con | and a state of the second                |
| 11. 2 C                                                |                                  | ·                                                                                 |                                                                                                                 |                                        | ( ~ )                       | ×            | 100                                  |                                         | 26                  | ×          | $\mathbb{A}$            | ;<br>;<br>;                              |
|                                                        |                                  | -                                                                                 |                                                                                                                 |                                        |                             |              |                                      |                                         |                     |            |                         | nas Belale a                             |
|                                                        | a                                |                                                                                   |                                                                                                                 |                                        |                             |              |                                      | 1<br>1<br>1<br>1                        |                     | 8          |                         |                                          |
|                                                        |                                  |                                                                                   |                                                                                                                 | · ···································· |                             |              |                                      |                                         |                     |            |                         |                                          |
| Relinquished by: ( <i>Signature</i> )                  | (                                |                                                                                   |                                                                                                                 | Date                                   | Time                        | Received b   | Received by: ( <i>Signature</i> )    | (e)                                     |                     | Date       |                         | Time                                     |
| Relinquished by: (Signature)                           |                                  |                                                                                   |                                                                                                                 | Date                                   | Time                        | Received for | Received for Laboratory: (Signature) | ry: (Signal                             | ture)               | Date       |                         | Time                                     |
| Sample Disposal Method:                                |                                  |                                                                                   |                                                                                                                 | Disposed of                            | Disposed of by: (Signature) | (e)          |                                      |                                         |                     | Date       |                         | Time                                     |
| SAMPLE COLLECTOR                                       |                                  |                                                                                   |                                                                                                                 | ANALYTICAL LABORATORY                  | LABORATO                    | RY           |                                      |                                         |                     | Ship       | Shipper ID #            | \<br>\<br>\<br>\                         |
| 100 State Street, Suite 600 TH<br>Montpelier, VT 05602 | IE JOHN                          | THE JOHNSON COMPANY, INC.                                                         | .NY, INC.                                                                                                       | Spectrum                               |                             | V V          | $\langle \cdot, \cdot \rangle$       |                                         |                     | <u>'</u> [ | Cours                   | and a star                               |
| 1119<br>9785-922 (208) XBA                             |                                  | a marka                                                                           | Stranges of Str                                                                                                 | (600) 789-                             | 129-91                      |              |                                      |                                         |                     |            |                         |                                          |
| WE                                                     | HTE - To a                       | occompany samp                                                                    | WHITE - To accompany sample to the lab and returned to the Johnson Co.                                          |                                        | YELLOW - Lab copy           |              | PINK - Transporter copy              |                                         | GOLD - Sampler copy | ler copy   |                         |                                          |

Routes - Markey

WHILE - TO accompany sample to the late and the featured to the late after the late of the

| ? |  |
|---|--|
|   |  |

ف

# Chain of Custody Record/Field Test Data Sheets for Air Analyses

Standard TAT - 7 to 10 business days

Rush TAT - Date Needed:

| approva                                            | for rushe                          |
|----------------------------------------------------|------------------------------------|
| <ul> <li>All TATs subject to laboratory</li> </ul> | Min, 24-hour notification needed 1 |
|                                                    |                                    |

|                  | HANIBAL                                                                          | HANIBAL TECHNOLOGY                                          |                |                                            |                     |                                 |                                                                                                                      |                                                                                    |                            |                                                                                                                 |                                                  | And Annual Contract of the Annual State of the | and the second se |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |
|------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------|----------------|--------------------------------------------|---------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------|
| Report To:       |                                                                                  |                                                             |                |                                            | Invoice To:         |                                 |                                                                                                                      |                                                                                    |                            |                                                                                                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Matrix                  | irix          |
| 5                |                                                                                  |                                                             |                |                                            |                     |                                 |                                                                                                                      | Project No.:                                                                       | 0.:                        |                                                                                                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |
|                  |                                                                                  |                                                             |                |                                            |                     |                                 |                                                                                                                      | Site Name:                                                                         |                            |                                                                                                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |
|                  |                                                                                  |                                                             |                |                                            |                     |                                 |                                                                                                                      | Location:                                                                          |                            |                                                                                                                 | . s                                              | State:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |
| Tel#:            |                                                                                  |                                                             |                |                                            | Attn:               |                                 |                                                                                                                      | Sampler (s):                                                                       | 5):                        | ſ                                                                                                               |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 'ir                     |               |
| Project Manager: | nager:                                                                           |                                                             |                |                                            | P.O. No.:           |                                 | RQN:                                                                                                                 |                                                                                    |                            |                                                                                                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , tasi                  | _             |
| Can ID S         | Cutgoing<br>Canister<br>Can<br>Pressure<br>Size (L) ("Hg) (Lab)                  | ng Incoming<br>er Canister<br>e Pressure<br>ab) ("Hg) (Lab) |                | Flow<br>Controller<br>Readout<br>(nul/min) | Lab id:             | Sample Id:                      | Sample Date(s)                                                                                                       | Time Start<br>(24 hr clock)                                                        | Time Stop<br>(24 hr clock) | Canister<br>Pressure in<br>Field ("Hg)<br>(Start)                                                               | Canister<br>Pressure in<br>Field ("Hg)<br>(Stop) | Interior<br>Temp. (F)<br>(Start)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Interior<br>Tenp. (F)<br>(Stop)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Indoor /Amb<br>Soil Gas |               |
| 200              | 21 50                                                                            |                                                             | Y USE ONLY     | C 10                                       |                     |                                 |                                                                                                                      |                                                                                    |                            |                                                                                                                 | •                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ped artematic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |
| - <u> </u>       |                                                                                  |                                                             |                | Sr.C                                       |                     |                                 |                                                                                                                      |                                                                                    |                            |                                                                                                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |
| 100              | - + 68mm (r<br>0 4.4 2 - 674                                                     | μ.                                                          | 2860           |                                            |                     |                                 |                                                                                                                      |                                                                                    |                            |                                                                                                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |
| 053              | 1                                                                                |                                                             | 2885           | 79.2                                       |                     |                                 |                                                                                                                      |                                                                                    |                            |                                                                                                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |
| 220              |                                                                                  | -Phot (Be-                                                  | 40             | 82.1                                       |                     |                                 |                                                                                                                      |                                                                                    |                            | 34                                                                                                              | 12                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |
| 0                |                                                                                  | 14                                                          | - 2003         | 50.9                                       | 10 40               | 10 4 16 Um                      | J                                                                                                                    |                                                                                    |                            | ير                                                                                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |
| 0.50             | 6.0321/1030143                                                                   | 9                                                           | z              | Š,2                                        |                     |                                 |                                                                                                                      |                                                                                    |                            |                                                                                                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |
| 430              |                                                                                  | ð                                                           | 3601           | 51.2                                       |                     |                                 |                                                                                                                      |                                                                                    |                            |                                                                                                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |
| 20               | (matan)                                                                          | 1.1                                                         | 306            | P.03                                       | P. 6                | W. Tart V. C.W.                 | and law                                                                                                              |                                                                                    |                            |                                                                                                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |
|                  |                                                                                  |                                                             |                |                                            | Å,                  |                                 |                                                                                                                      |                                                                                    |                            |                                                                                                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |
|                  | Y                                                                                | Ambicat Temperature (Fahrenheit)                            | ature (Fahrenh | ucit)                                      | Ambicat P           | Ambient Pressure (inches of Hg) |                                                                                                                      | Special Instructions/QC Requirements &                                             | C Requirem                 | ents & Con                                                                                                      | Comments:                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |
| Client           | Ma                                                                               | Maximum                                                     | Niaimum        | արա                                        | Maximum             | Minimum                         | Ę                                                                                                                    |                                                                                    |                            |                                                                                                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |
| Use              | Start .                                                                          |                                                             |                |                                            |                     |                                 |                                                                                                                      |                                                                                    |                            |                                                                                                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |
| s                | Stop                                                                             |                                                             |                |                                            |                     |                                 |                                                                                                                      |                                                                                    |                            |                                                                                                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |
| Date of Reque    | Date of Request: 3 1 2 10                                                        | 5                                                           |                |                                            | # Summa Canisters:  | ers: Q                          | I attest tha                                                                                                         | t that all mea                                                                     | ia relingnist              | ied fram Sp.                                                                                                    | ectrum And                                       | dytical, Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . have beet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I attest that that all media relingnished from Spectrum Analytical, Inc. have been received in good working condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d working con           | ndition       |
| Requested by:    | Requested by                                                                     |                                                             | 7.4 NEWER      |                                            | # Flow Controllers: | ers: Q                          | and agree                                                                                                            | and agree to the terms and conditions as listed on the back of this document. $st$ | md condition               | is as listed o                                                                                                  | m the back                                       | of this doc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ument,*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a state of the sta |                         |               |
| Company:         | 2 JANSW                                                                          | 5                                                           | 1              |                                            | Flow Rate/Setting:  | ng: 1/1 1-0                     | Signed:                                                                                                              |                                                                                    |                            |                                                                                                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |               |
| Location:        | t                                                                                |                                                             |                |                                            | Date Needed:        | ed: 3 1191,0                    | Printed:                                                                                                             |                                                                                    |                            |                                                                                                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |
| * Please contac  | * Please contact S.4 's Air Department immediately at (800) 789-9115 if you      | intment immedi                                              | ately at (800) | 789-9115 1                                 | nos                 | Relin                           | Relinquished by:                                                                                                     |                                                                                    |                            | Rece                                                                                                            | Received by:                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Time:                   | ;;            |
| wherience any    | experience any technical difficulties or suspect any QC issuels) with air media. | tries or suspect                                            | t any QC issue | e(s) with air i                            | nedia.              |                                 |                                                                                                                      |                                                                                    | and in the second          | CA-C-                                                                                                           | -45                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1<br> : \{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60/612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 7/                    | 5             |
| ⊡ E-mail results | Its                                                                              |                                                             |                |                                            |                     |                                 |                                                                                                                      | 5                                                                                  | X                          |                                                                                                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 133 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1975 (C)                |               |
| EDD format       |                                                                                  |                                                             |                |                                            |                     |                                 |                                                                                                                      | <br> <br>                                                                          | 5                          | e de la companya de l |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                       |               |
|                  | 97780<br>97780                                                                   |                                                             | 117            | Almgren Dri                                | ive • Agawam, M     | A 01001 • 1-800                 | 11 Almgren Drive • Agawam, MA 01001 • 1-800-789-9115 • 413-789-9018 • FAX 413-789-4076 • www.spectrum-analytical.com | -9018 · FAX                                                                        | 413-789-407                | 6• www.sp                                                                                                       | ectrum-ana                                       | ytical.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Revise                  | Revised 12/08 |

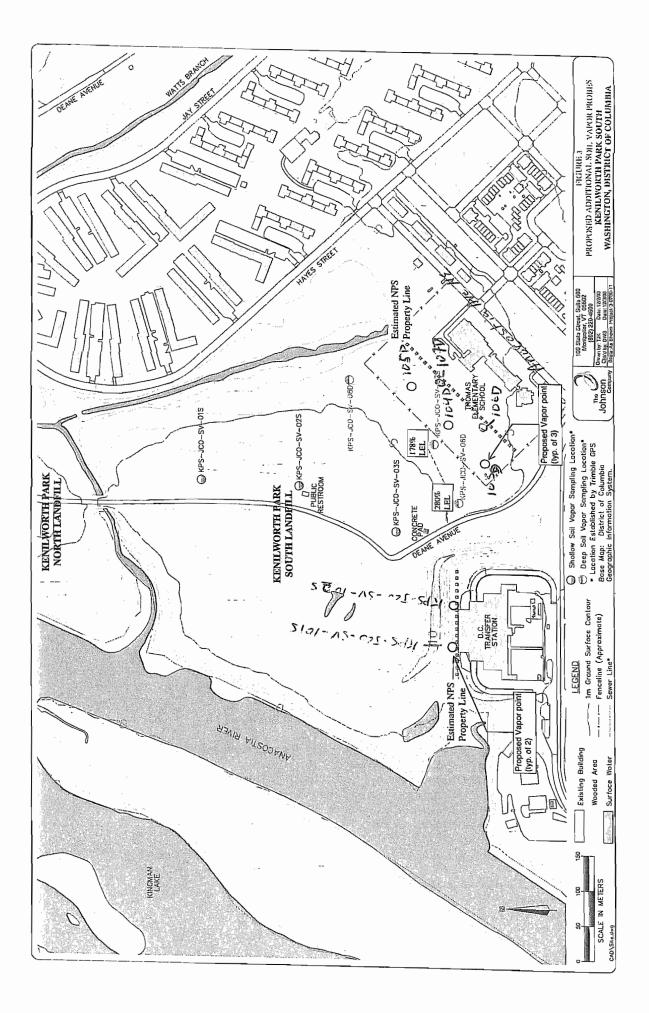
### TERMS AND CONDITIONS

Due to the high costs of media used for air sampling, the following terms and conditions are summarized below for your information and our laboratory's use.

- 1. Media shall be returned in the same condition as received, if not, full replacement costs will be invoked to client.
- 2. Media will be returned to the laboratory within ten days of receipt.
- 3. Media not returned to the laboratory for any reason will be charged a rental fee as described below.
  - Summa Canisters not returned after ten days
  - Summa Canisters not returned
  - Passive Flow Controller
  - Stainless steel tubing attachment not returned
  - In-line Air Sampling Filter not returned
- 4. Cleaning fee for media returned unused

### CHAIN OF CUSTODY RECORD - INSTRUCTIONS

### GENERAL


ø

- 1. All applicable information must be completed.
- 2. Forms must be completed legibly and in indelible ink.
- 3. Any errors must be corrected by a single line strikethrough along with the date and initials of the individual making the correction.

### FORM COMPLETION

- 4. Page Numbering Enter the total number of pages and the page number of each individual page.
- 5. Special Handling Check whether standard or rush turn around time is needed. For rush TAT indicate date.
- 6. **Report To** Enter the company name, address, phone and fax numbers.
- 7. Project Mgr. Enter the Project Manager's name.
- 8. Invoice To Enter the company name, address, phone and fax numbers.
- 9. P.O. No. Enter P.O. number to appear on invoice.
- 10. **RQN** List quotation number if applicable.
- 11. **Project Number/Site Name/Location/State** Enter project number (if applicable). The project name and location/state must be completed.
- 12. Sampler(s) Print name(s) of sampler(s) and the organization by which they are employed.
- 13. <u>SAMPLE INFORMATION</u> 1t is the intent of this form that each unique sample taken from the same location at the same time be listed per line.
  - a. Sample ID Enter the field sample ID number(s) of each unique sample (s).
  - b. **Date** Enter the date(s) sampled.
  - c. Time Start Enter the start time of sample collection. Military time preferred.
  - d. Time Stop Enter the stop time of sample collection. Leave blank for grab sample.
  - e. Canister Pressure Start Enter pressure at time of start of sample.
  - f. Canister Pressure Stop Enter pressure at time of end of sample.
  - g. Interior Temp. Start Enter temperature at time of start of sample.
  - h. Interior Temp. Stop Enter temperature at time of end of sample.
  - i. Analyses Specify the test(s) to be requested by method number(s).
  - j. Matrix Enter a matrix type.
  - k. Check box if canister is returned unused Check if no analysis required for canister.
- 14. Temperature/Pressure Complete as necessary
- 15. Special Instructions/QC Requirements Pertinent remarks about the sample or sample condition may be noted as well. List any QA/QC notes including reporting level or applicable limits to be met.
- 16. <u>REPORT DELIVERY</u> Indicate whether results are to be emailed and list email address. Also indicate EDD format if one is needed in addition to PDF of laboratory report.
- 17. Condition Upon Receipt For laboratory use only.
- SIGNATURES FOR CUSTODY PURPOSES Use as many lines as necessary to show transfer and receipt of samples.
  - a. Relinquished by Signature of person who relinquishes samples.
  - b. Received by Signature of person who accepts samples.
  - c. Date/Time List date and time of sample transfer.

\$ 50.00 rental fee per week per canister
\$900.00 per canister – plus rental fee
\$600.00 per controller
\$ 15.00 per canister
\$ 100.00 per filter
\$ 50.00 per canister



# A Pine Environmental Services, Inc

# 29 Washington Ave. Unit A, Scarborough, ME 04074 888-779-PINE(Toll-Free) 207-797-4100(Phone) 207-797-5174(Fax) pine-me@pine-environmental.com

# Certificate of GEM 2000 Calibration

GEM 2000 Serial Number gm07600/04 was calibrated to the manufacturer's specifications with NIST standards.

 Model:
 2000

 Pine No:
 4379

 Serial No:
 gm07600/04

### lot Number:87303 (Gem-50-35)

| Calibration Standard | Instrument<br>Output | Allowable Range | % Difference |
|----------------------|----------------------|-----------------|--------------|
| Methane: 50%         | 50%                  | 47.5-52.5 %     | 0%           |
| Carbon Dioxide: 35%  | 35%                  | 33.25-36.75 %   | 0%           |

### Environmental Conditions of Test Area:

Temperature Degree 70 %Relative Humidity 23

Calibrated By: Paul Troutman Date: 3/17/2009 4:02:00 PM

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

### Notify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 888-779-PINE for Technical Assistance

dea missing heritagine set.

# A Pine Environmental Services, Inc

# 29 Washington Ave. Unit A, Scarborough, ME 04074 888-779-PINE(Toll-Free) 207-797-4100(Phone) 207-797-5174(Fax) pine-me@pine-environmental.com

# GEM 2000 Packing List

Pine No: 4379 Serial No: gm07600/04

| Standard Items                                                                                                                                                                                                                                               | Prepared   | QC<br>Check | Received<br>by<br>Customer | Received by<br>Pine |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|----------------------------|---------------------|
| Manual<br>Quick reference card<br>Charger and AC power cord<br>(2) 4' lengths of sample tubing w/ (4) male quick<br>connects<br>Hydrophobic filter assembly<br>(2) extra male quick connects<br>NIST traceable calibration sheet<br>Extra hydrophobic filter |            |             |                            |                     |
| Optional Accessory                                                                                                                                                                                                                                           | Prepared Q | )C Check    | Received<br>by<br>Customer | Return to Pinc      |
| CH4 and CO2 calibration gas mix<br>Low O2 calibration gas<br>.5 lpm gas regulator + tubing w/ q-connect<br>H2S sensor pod<br>CO sensor pod<br>H2S calibration gas<br>CO calibration gas<br>temperature probe<br>Software and comm. cable<br>Prepared By:     | TA<br>TA   |             |                            |                     |

This packing list is to ensure that every item needed to operate the unit was sent and received. Upon receiving a shipment, please fill out the "Received by customer" column. Call Pine within 24 hrs. of receiving the equipment if any pieces are missing, damaged, or malfunctioning. Thank you for choosing Pine Environmental Services, Inc.

For Technical Support call 888-779-PINE

# **APPENDIX 2**

# SOIL VAPOR PROBE CONSTRUCTION AND SAMPLING LOGS (OCTOBER 2008 AND MARCH 2009)

| Soil Gas Well Construction           Project Name:         Kenilworth Park Land           Project Number:         3-0700-11 (126)           Site Location:         Northeast Washington                                                                                                                                                                               | 511                                                 | The Johnson Company, I<br>100 State Street, Suite 600<br>Montpelier, VT 05602<br>Tel. (802) 229-4600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Well ID: KPN - SV - O Field                                                                                                                                                                                                                                                                                                                                           |                                                     | O Recorded t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | J.B       |
| Permit Number:                                                                                                                                                                                                                                                                                                                                                        | Installation Date: <u>(0/14/</u><br>Drilling Fluid: | 08 Driller: <u><u></u><br/>Fluid Loss During Drill</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1420      |
| Ambient PID Reading:                                                                                                                                                                                                                                                                                                                                                  | Borehole PID Reading:                               | Bpm book                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | kground   |
| Well Construction Details: (all measure                                                                                                                                                                                                                                                                                                                               | ments relative to ground surface)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O. Z PP   |
| Riser Pipe       Material: Iet lo., To         Sandpack       Material: Filter Sent         Top:       [4]       Bottom:       23         Screen       Material: SS         Top:       16       Bottom:       23"         Length:       C       Diameter:       1/2"         Notes:       Tan       Sandpack         Diameter:       1/2"         Data       Sandpack | Janes gradis                                        | Protective Casing ##<br>Material:<br>Slab Thickness:<br>Material Under Slab:<br>Road Box Seal:<br>Annular Seal Material:<br>Top:<br>Secondary Seal Material:<br>Top:<br>Bottom:<br>Secondary Seal Material:<br>Top:<br>Bottom:<br>Material:<br>Top:<br>Material Material:<br>Top:<br>Material:<br>Secondary Seal Material:<br>Material:<br>Material:<br>Secondary Seal Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Material:<br>Ma |           |
| Integrity Testing:                                                                                                                                                                                                                                                                                                                                                    | Time                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | entration |
| Date Completed: Injection                                                                                                                                                                                                                                                                                                                                             |                                                     | Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| Tracer Type: Tracer Gr                                                                                                                                                                                                                                                                                                                                                | ade:                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| Tracer Gas Detection Meter:                                                                                                                                                                                                                                                                                                                                           |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| Model:                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| Serial:                                                                                                                                                                                                                                                                                                                                                               |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| Sampling Details:<br>Sampler: <u> </u>                                                                                                                                                                                                                                                                                                                                | Method: Tet on twee                                 | for V.P. Joo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | #:        |
| Sample ID Date Tir<br>Star                                                                                                                                                                                                                                                                                                                                            |                                                     | Vacuum at Vacuum at Start End                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | COC       |
| KPN JLO. SV.01 10/17/28 9:                                                                                                                                                                                                                                                                                                                                            | 10 9:25 0132                                        | 29" !"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8226      |
| Notes:                                                                                                                                                                                                                                                                                                                                                                |                                                     | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |

|       | Soil Gas Well Construction Log                                                                                                                             |                   | The Johnson<br>100 State Stre<br>Montpelier, V |                 | c. pg. 1/1 |        |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------|-----------------|------------|--------|
|       | Project Name:         Kenilworth Park Landfill           Project Number:         3-0700-11 (126)           Site Location:         Northeast Washington, DC |                   | Tel. (802) 22                                  |                 | ~ /\       |        |
|       | Well ID: KPN - Joo - SV 02 Field Personnel: TP9                                                                                                            | 7-13              |                                                | Recorded by     | · j.vz     |        |
|       | Permit Number: Installation Date: 10                                                                                                                       | 14/08             | Driller:                                       | J-O/TR          | 2e         |        |
|       | Drilling Method: Drilling Fluid:                                                                                                                           | *****             | Fluid Loss                                     | During Drillin  | g:         |        |
|       | Ambient PID Reading: Borehole PID Reading:                                                                                                                 | 8 ppm             |                                                |                 |            |        |
|       | Well Construction Details: (all measurements relative to ground sur                                                                                        | face)             |                                                |                 |            |        |
|       |                                                                                                                                                            | - P               | rotective Cas                                  | sing NH         |            |        |
|       | Riser Pipe Material: Jethen Tubing                                                                                                                         |                   |                                                |                 |            |        |
|       |                                                                                                                                                            |                   |                                                |                 |            |        |
|       | Sandpack Material: F: 11erSow                                                                                                                              | $\langle \rangle$ |                                                | Slab:           |            |        |
|       | Top: <u>/0</u> Bottom: <u>/0</u>                                                                                                                           | R                 | load Box Seal                                  |                 | <u> </u>   | •      |
|       | Screen Material: 55                                                                                                                                        | \                 | nnular Seal                                    |                 | stanular 1 | Senter |
|       | Top: <u>17</u> Bottom: <u>18</u> "                                                                                                                         | \                 |                                                | _ Bottom:       |            |        |
|       | Length: $\sqrt{\frac{1}{2}}$ Diameter: $\sqrt{\frac{1}{2}}$                                                                                                |                   |                                                |                 | Backf:1/   |        |
|       |                                                                                                                                                            |                   | `op:                                           |                 | Native     |        |
|       | Notes: 250di3h some give cu                                                                                                                                | nol               |                                                | /               | 4 great    |        |
|       |                                                                                                                                                            | 1.1.1             | pole C                                         | (               | •          |        |
|       |                                                                                                                                                            | 15+ 1             | 1010 0                                         | 55.0            | <u> </u>   |        |
|       | Integrity Testing:                                                                                                                                         | Time              | Sampling<br>Rate                               | Concer          | itration   |        |
|       | Date Completed: Injection Pressure:                                                                                                                        |                   |                                                |                 |            |        |
|       | Tracer Type: Tracer Grade                                                                                                                                  |                   |                                                |                 |            |        |
|       | Tracer Gas Detection Meter:                                                                                                                                |                   |                                                |                 |            |        |
|       | Model:                                                                                                                                                     |                   |                                                | <b>_</b>        |            |        |
|       | Serial:                                                                                                                                                    |                   |                                                |                 |            |        |
|       | Sampling Details: /                                                                                                                                        |                   |                                                |                 |            |        |
|       | Sampler: TRO/J·B Method:                                                                                                                                   |                   |                                                | JCO #:          |            |        |
|       | ·····                                                                                                                                                      |                   |                                                |                 |            |        |
|       | Sample ID Date Time Time Sum<br>Started Ended Canist                                                                                                       |                   |                                                | acuum at<br>End | COC        |        |
|       | 9-20                                                                                                                                                       |                   |                                                |                 | 2001       |        |
|       | KPN-JCO-SN. 02 10/12/08 9:38 9:53 107                                                                                                                      | 2 20              | 1                                              | ,               | 8726       |        |
|       |                                                                                                                                                            |                   |                                                |                 |            |        |
|       | 02                                                                                                                                                         |                   | .04                                            | 111             | 11.        |        |
| 0 55- | Notes: 15t 4012 25" 365                                                                                                                                    | (                 | 18" as                                         | h / blad        | ck/ Datos  |        |
|       | Sppm methome (1)                                                                                                                                           |                   | 4                                              | 1               | /          |        |
|       | CH4: 0.420, CO2: 0.2%, O2: (9.7%                                                                                                                           | LEL = 9%          | 10                                             |                 |            |        |
|       | , ,                                                                                                                                                        |                   |                                                |                 |            |        |

| Soil Gas Well                                                                                                                                                                            | Construc                                                                 | tion Log                                                            | 3                         |                     |                                               | h <b>nson Company,</b> l<br>te Street, Suite 600 |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------|---------------------|-----------------------------------------------|--------------------------------------------------|-----------|
| Project Name: <u>Ka</u><br>Project Number: <u>3</u><br>Site Location: <u>Na</u>                                                                                                          | -0700-11 (120                                                            | 6)                                                                  |                           | I                   | Montpe                                        | lier, VT 05602<br>02) 229-4600                   |           |
| Well ID: KPN .SL                                                                                                                                                                         | 0.51-03                                                                  | Field Perso                                                         | onnel:                    | S.D TR              | 0                                             | Recorded                                         | by: 1.5   |
| Permit Number:                                                                                                                                                                           |                                                                          |                                                                     |                           | •                   |                                               | er:                                              |           |
| Drilling Method:                                                                                                                                                                         |                                                                          |                                                                     |                           |                     |                                               | Loss During Drill                                | ing:      |
| Ambient PID Readin                                                                                                                                                                       | g: _0.Z f                                                                | Bor                                                                 | rehole PID R              | leading:            | <u> 3 p. z. n</u>                             |                                                  |           |
| Well Construction I                                                                                                                                                                      | Details: (all m                                                          | easurements                                                         | relative to g             | round surface)      |                                               | <i></i>                                          |           |
|                                                                                                                                                                                          |                                                                          |                                                                     |                           |                     |                                               | ve Casing #A                                     |           |
| Riser Pipe Ma                                                                                                                                                                            | terial: Tetle                                                            | Tulm                                                                |                           |                     |                                               | •                                                |           |
|                                                                                                                                                                                          | terial: FiHe                                                             |                                                                     |                           |                     |                                               | ckness:                                          |           |
| Sandpack Ma<br>Top: <u>/5''</u> Bot                                                                                                                                                      | tom: 71                                                                  | <u>sonv</u>                                                         | $\backslash$ $\backslash$ | $\downarrow$        |                                               | Under Slab:                                      |           |
| •                                                                                                                                                                                        |                                                                          |                                                                     |                           |                     |                                               | x Seal:                                          |           |
| Screen Ma                                                                                                                                                                                | terial: <u> </u>                                                         | 7                                                                   | $\searrow$                |                     | Annular                                       | Seal Material:                                   | YANIN !   |
| Screen Mai<br>Top: <u>17</u> " Bot<br>Length: <b>2</b> 6 Dia                                                                                                                             | tom: <u> </u>                                                            | 2                                                                   |                           |                     |                                               | Bottom:                                          | 15-       |
| Length: <b>a</b> $\rho$ Dia                                                                                                                                                              | meter: $\frac{1}{2}$                                                     | L                                                                   |                           |                     |                                               | ry Seal Material:                                |           |
|                                                                                                                                                                                          |                                                                          |                                                                     | L                         | 1                   | Top:                                          | Bottom:                                          |           |
|                                                                                                                                                                                          |                                                                          |                                                                     |                           |                     |                                               |                                                  |           |
| Notes:                                                                                                                                                                                   | 4121                                                                     | L                                                                   |                           |                     |                                               |                                                  |           |
| Notes: R                                                                                                                                                                                 |                                                                          |                                                                     | Sand                      |                     | avel                                          |                                                  |           |
| R                                                                                                                                                                                        |                                                                          |                                                                     | Scmol<br>1/ satis         | - to si             | avel<br>rade                                  |                                                  |           |
| R<br>Integrity Testing:                                                                                                                                                                  | Pack                                                                     | F:11 w                                                              | / satis                   |                     | avel                                          | ing Conc                                         | entration |
| As Integrity Testing:                                                                                                                                                                    | Pqc L                                                                    | Fill w                                                              | / <b></b>                 |                     | aje<br>rade<br>ne Sampli                      | ing Conc                                         |           |
| R<br>Integrity Testing:                                                                                                                                                                  | Pqc L                                                                    | Fill w                                                              | / <b></b>                 |                     | aje<br>rade<br>ne Sampli                      | ing Conc                                         |           |
| Integrity Testing: Date Completed: Tracer Type: Tracer Gas Detection                                                                                                                     | Pack                                                                     | F: J w                                                              | / <b></b>                 |                     | aje<br>rade<br>ne Sampli                      | ing Conc                                         |           |
| Integrity Testing: Date Completed: Tracer Type: Tracer Gas Detection Model:                                                                                                              | Inje                                                                     | ction Reessu                                                        | / <b></b>                 |                     | aje<br>rade<br>ne Sampli                      | ing Conc                                         |           |
| Integrity Testing: Date Completed: Tracer Type: Tracer Gas Detection                                                                                                                     | Inje                                                                     | ction Reessu                                                        | / <b></b>                 |                     | aje<br>rade<br>ne Sampli                      | ing Conc                                         |           |
| Integrity Testing: Date Completed: Tracer Type: Tracer Gas Detection Model:                                                                                                              | Inje                                                                     | ction Reessu                                                        | / <b></b>                 |                     | aje<br>rade<br>ne Sampli                      | ing Conc                                         |           |
| Integrity Testing:         Date Completed:         Tracer Type:         Tracer Gas Detection         Model:         Serial:                                                              | <u>Pac</u><br>Inje<br>Tra<br>n Meter:                                    | f:]] w                                                              | / <b></b>                 |                     | aje<br>rade<br>ne Sampli                      | ing Conc                                         |           |
| Integrity Testing:         Date Completed:         Tracer Type:         Tracer Gas Detection         Model:         Serial:         Sampling Details:         Sampler:                   | <u>Pac</u><br>Inje<br>Tra<br>n Meter:                                    | F:]] w<br>ection Reessu<br>weer Grade:                              | ethod:                    |                     | AJE<br>Nade<br>Ne Sampli<br>Rate              | ing Conce                                        | entration |
| Integrity Testing:         Date Completed:         Tracer Type:         Tracer Gas Detection         Model:         Serial:         Sampling Details:                                    | <u>P</u> <u><u>q</u><u>c</u><u>L</u><br/> Inje<br/> Tra<br/>n Meter:</u> | f:]] w                                                              | nre:                      |                     | aje<br>rade<br>ne Sampli                      | ing Conc                                         |           |
| Integrity Testing:         Date Completed:         Tracer Type:         Tracer Gas Detection         Model:         Serial:         Sampling Details:         Sampler:         Sample ID | Pac L<br>Inje<br>Tra<br>n Meter:<br>Date                                 | F:]] w<br>ection Reessu<br>acer Grade:<br><br>Mo<br>Time<br>Started | ethod:                    | Summa<br>Canister # | Vacuum at<br>Start                            | ing Conce<br>JCO<br>Vacuum at<br>End             | entration |
| Integrity Testing:         Date Completed:         Tracer Type:         Tracer Gas Detection         Model:         Serial:         Sampling Details:         Sampler:                   | Pac L<br>Inje<br>Tra<br>n Meter:<br>Date                                 | F:]] w<br>ection Reessu<br>acer Grade:<br><br>Mo<br>Time<br>Started | ethod:                    | Tir<br>Tir<br>Summa | AJE<br>rade<br>ne Sampli<br>Rate<br>Vacuum at | JCO                                              | entration |
| Integrity Testing:         Date Completed:         Tracer Type:         Tracer Gas Detection         Model:         Serial:         Sampling Details:         Sampler:         Sample ID | Pac L<br>Inje<br>Tra<br>n Meter:<br>Date                                 | F:]] w<br>ection Reessu<br>acer Grade:<br><br>Mo<br>Time<br>Started | ethod:                    | Summa<br>Canister # | Vacuum at<br>Start                            | ing Conce<br>JCO<br>Vacuum at<br>End             | entration |
| Integrity Testing:         Date Completed:         Tracer Type:         Tracer Gas Detection         Model:         Serial:         Sampling Details:         Sampler:         Sample ID | Pac L<br>Inje<br>Tra<br>n Meter:<br>Date                                 | F:]] w<br>ection Reessu<br>acer Grade:<br><br>Mo<br>Time<br>Started | ethod:                    | Summa<br>Canister # | Vacuum at<br>Start                            | ing Conce<br>JCO<br>Vacuum at<br>End             | entration |

| Project Name: <u>K</u><br>Project Number:                                                  |                                                                                                                                                                                                        | Landfill        | 51.0          | ,                   | 100 Sta<br>Montpe                                                                 | hnson Company, I<br>ate Street, Suite 600<br>elier, VT 05602<br>602) 229-4600                         |                  |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|---------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------|
| Site Location: <u>N</u><br>Well ID: <u>KPN</u>                                             | ortheast Wash                                                                                                                                                                                          | Field Barro     | mm als        | J.B /.              | TRO                                                                               | Recorded t                                                                                            | TID              |
| Permit Number:<br>Drilling Method:<br>Ambient PID Readir                                   |                                                                                                                                                                                                        | Inst            | allation Date | = <u>10/1</u>       | /09 Dril                                                                          | ler:d Loss During Drill                                                                               |                  |
| Sandpack Ma<br>Top: <u>14</u> Bo<br>Screen Ma<br>Top: <u>17</u> Bo<br>Length: <u>'</u> Dia | aterial: $\underline{Tet}$ aterial: $\underline{F:}$ aterial: $\underline{F:}$ aterial: $\underline{C}$ aterial: $\underline{SC}$ attom: $\underline{C}$ attom: $\underline{C}$ attom: $\underline{C}$ | sand            |               | round surface)      | Material<br>Slab Thi<br>Material<br>Road Bo<br>Annular<br>Top:<br>Seconda<br>Top: | ive Casing N/A<br>i:<br>ickness:<br>Under Slab:<br>ox Seal:<br>r Seal Material:<br>Bottom:<br>Bottom: | Gianular [<br>14 |
| ntegrity Testing:                                                                          |                                                                                                                                                                                                        |                 |               |                     | ne 8amp<br>Rat                                                                    |                                                                                                       | entration        |
| Fracer Type:<br>Fracer Gas Detectio<br>Model:<br>Serial:                                   | n Meter:                                                                                                                                                                                               |                 |               |                     |                                                                                   |                                                                                                       |                  |
|                                                                                            | /                                                                                                                                                                                                      | Me              | thod: Tet     | lon tube :          | frem V.P.                                                                         | JCO#                                                                                                  | #:               |
| Sampling Details:<br>Sampler:PO                                                            | 7.3                                                                                                                                                                                                    |                 |               |                     |                                                                                   |                                                                                                       |                  |
| Sampling Details:<br>Sampler: <u>7</u> 20<br>Sample ID                                     | Date                                                                                                                                                                                                   | Time<br>Started | Time<br>Ended | Summa<br>Canister # | Vacuum at<br>Start                                                                | Vacuum at<br>End                                                                                      | COC              |
| Sampler: <u>T</u> PO                                                                       | Date                                                                                                                                                                                                   | Time            |               |                     |                                                                                   |                                                                                                       | сос<br>8226      |

| Project Number:                             | Kenilworth Park<br>3-0700-11 (12) | (Landfill<br>6) | 5                 |                     |                        |               |                 | nc.     | pg. 1/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------|-----------------------------------|-----------------|-------------------|---------------------|------------------------|---------------|-----------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Site Location: <u>N</u><br>Well ID: KPN - S | Northeast Wash                    |                 |                   | TRO.                | Т. <b>г.</b>           |               |                 |         | ה ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                             |                                   |                 |                   |                     |                        |               |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Permit Number:                              |                                   | Inst            | tallation Date    | . 10/14             | 4/08                   | Driller:      |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Drilling Method:                            |                                   |                 |                   |                     | <b>.</b>               | Fluid Los     | s During Drilli | ng:     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ambient PID Readi                           |                                   |                 |                   |                     | ppm                    | -             |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Well Construction                           | Details: (all m                   | easurements     | relative to g     | round surface)      |                        | Protective Ca | sing A/A        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                             |                                   |                 |                   |                     |                        |               |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Riser Pipe M                                | laterial: <u>T•+/o</u>            | m Tubing        | $\triangleright$  |                     |                        |               | is:             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                             | laterial: <b>f://</b>             |                 |                   |                     |                        |               | er Slab:        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Top:B                                       | ottom: 24                         | 4 <sup>n</sup>  | $\mathbf{X}$      | $ \setminus $       | $\mathbf{i}$           |               | d:              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Screen M                                    | laterial: 5                       | .5.             |                   |                     | $\backslash \setminus$ | Annular Seal  | Material:       | Crow    | wher B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Top: 18 B                                   | ottom: 24                         | 4"              |                   |                     | \                      |               | Bottom:         |         | and the second se |
| Length: $(\rho D)$                          |                                   |                 |                   |                     |                        |               | al Material:    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                             | 7                                 |                 | -                 |                     |                        |               | Bottom:         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Notes: Bre                                  | en Gre                            | Jol .           | lay/a             | 14. 0               |                        | &"            | Dottom          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                             | Bricks                            |                 | 17                | the colo            |                        |               | toward          | (,      | BOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                             |                                   | 1 1             |                   |                     |                        |               |                 |         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Integrity Testing:                          |                                   |                 |                   | Tir                 | ne                     | Sampling      | Conce           | ntratio | 'n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Date Completed:                             | Inje                              | ection Pressu   | re:               |                     | $\leq$                 | Rate          |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Tracer Type:                                | Tra                               | cer Grade: _    |                   | _/                  |                        |               |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Tracer Gas Detecti                          | on Meter:                         |                 |                   |                     |                        |               |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Model:                                      |                                   |                 |                   |                     |                        |               |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Serial:                                     |                                   | _ /             |                   |                     |                        |               |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                             |                                   |                 |                   |                     |                        |               |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sampling Details:<br>Sampler:               | 20 [ J.B                          | . Me            | ethod: <u>Sou</u> | ma - Tel            | la -                   | VP            | JCO #           | l:      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sample ID                                   | Date                              | Time<br>Started | Time<br>Ended     | Summa<br>Canister # | Vacuu<br>Sta           |               | acuum at<br>End |         | COC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| KPN-310.51.05                               | 10/17/08                          | 10:23           | 10:47             | 1077                | 3                      | 0             | 2               | 87      | 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                             |                                   |                 |                   |                     |                        |               |                 | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                             |                                   |                 |                   |                     |                        |               |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                             | - <b>h h</b> .                    |                 |                   |                     |                        |               |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Notes:                                      |                                   | ·····           |                   |                     |                        |               |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                             |                                   |                 |                   |                     |                        |               |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                             |                                   |                 |                   |                     |                        |               |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Soil Gas Well Project Name: Ko Project Number: 3 Site Location: No                                             | enilworth Park               | : Landfill<br>5) |                               |                     |      | 100 State<br>Montpeli                                                              | nson Company, Ir<br>2 Street, Suite 600<br>ier, VT 05602<br>2) 229-4600                        | ıс. рд. 1/1       |
|----------------------------------------------------------------------------------------------------------------|------------------------------|------------------|-------------------------------|---------------------|------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------|
| Well IDKPN . Jo                                                                                                |                              |                  | nnel:                         | TRO ( 5.            | B    |                                                                                    | Recorded by                                                                                    | y: 5,13           |
| Permit Number:<br>Drilling Method:<br>Ambient PID Readin<br>Well Construction                                  | g:_0.cz                      | Dri<br>Bor       | lling Fluid: _<br>ehole PID R | eading: 0.          |      | Fluid                                                                              | r:<br>Loss During Drillin                                                                      |                   |
| Sandpack Ma<br>Top: <u>15</u> Bo<br>Screen Ma<br>Top: <u>10</u> Bo<br>Length: <u>0</u> Dia<br>Notes: <u>20</u> | tterial:<br>ttom:<br>umeter: | - Sand<br>       |                               | sonre l             |      | Material:<br>Slab Thick<br>Material U<br>Road Box<br>Annular S<br>Top:<br>Secondar | e Casing MA<br>kness:<br>Jnder Slab:<br>Seal:<br>Seal Material:<br>y Seal Material:<br>Bottom: | Bontomite<br>15 " |
| Integrity Testing:<br>Date Completed:<br>Tracer Type:                                                          |                              |                  |                               |                     | no   | Samplin<br>Rate                                                                    | ng Conce                                                                                       | ntration          |
| Tracer Gas Detectio<br>Model:<br>Serial:<br>Sampling Details:                                                  | n Meter:                     | _                |                               |                     |      |                                                                                    |                                                                                                |                   |
| Sampler:12<br>Sample ID                                                                                        | Date                         | Time<br>Started  | Time<br>Ended                 | Summa<br>Canister # | Vacı | ing to V<br>num at<br>tart                                                         | <u>Z</u> JCO #<br>Vacuum at<br>End                                                             | COC               |
| KPN.JCO.51-06                                                                                                  | 10/17/08                     | 13:44            | 14:02                         | (082                |      | 0                                                                                  | 1                                                                                              | 8726              |
|                                                                                                                |                              |                  | 1                             | in co               |      |                                                                                    |                                                                                                |                   |

| Project Name: <u>Kenilworth Park Landf</u><br>Project Number: <u>3-0700-11 (126)</u>                  |                                     |                     | 100 State<br>Montpeli                                                                                                                 | son Company, In<br>Street, Suite 600<br>er, VT 05602<br>) 229-4600 | с. pg. 1/1  |
|-------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------|
| Site Location: <u>Northeast Washington</u><br>Well ID: <u>ドアハ - らく・07</u> Field                       |                                     | to/~.e              |                                                                                                                                       | Recorded by                                                        | 5.8         |
| , , ,                                                                                                 |                                     | , /                 | •                                                                                                                                     |                                                                    | ·           |
| Permit Number:                                                                                        |                                     |                     |                                                                                                                                       |                                                                    |             |
|                                                                                                       | Drilling Fluid:                     |                     |                                                                                                                                       | Loss During Drillin                                                | ig:         |
| Ambient PID Reading:                                                                                  | Borehole PID Re                     | eading:             |                                                                                                                                       |                                                                    |             |
| Well Construction Details: (all measurer                                                              | ments relative to gr                | round surface)      |                                                                                                                                       |                                                                    |             |
|                                                                                                       |                                     |                     |                                                                                                                                       | Casing N/4                                                         |             |
| Riser Pipe Material: Te flen To                                                                       | h 12m                               |                     |                                                                                                                                       |                                                                    |             |
| C.11                                                                                                  |                                     |                     |                                                                                                                                       | ness:                                                              |             |
|                                                                                                       | <u>×</u> _/ _                       |                     | $\mathbf{i}$                                                                                                                          | nder Slab:                                                         |             |
| op: <u>6</u> " Bottom: <u>29</u> "                                                                    | $- \setminus \blacksquare$          |                     |                                                                                                                                       | Seal:                                                              |             |
| Screen Material: <u>SS</u>                                                                            | $ \setminus$ $\setminus$            |                     | Annular S                                                                                                                             | eal Material:                                                      | Franc las B |
| op: V Bottom: C                                                                                       |                                     |                     | Top:                                                                                                                                  | Bottom: _                                                          | 6"          |
| ength: <u>6</u> Diameter: <u>/2</u>                                                                   |                                     |                     |                                                                                                                                       | Seal Material:                                                     |             |
| /                                                                                                     |                                     | 2.                  |                                                                                                                                       | Bottom:                                                            |             |
| ntegrity Testing:<br>hate Completed: Injection P                                                      | t nired                             |                     |                                                                                                                                       | <u>s to 24</u>                                                     | ntration    |
| nie completed.                                                                                        |                                     |                     |                                                                                                                                       |                                                                    |             |
| racer Type: Tracer Gra                                                                                |                                     |                     |                                                                                                                                       |                                                                    | 1           |
|                                                                                                       |                                     |                     |                                                                                                                                       |                                                                    |             |
| racer Gas Detection Meter:                                                                            |                                     |                     |                                                                                                                                       |                                                                    |             |
| Yracer Gas Detection Meter:                                                                           |                                     |                     |                                                                                                                                       |                                                                    |             |
| Fracer Gas Detection Meter:                                                                           |                                     |                     |                                                                                                                                       |                                                                    |             |
| Fracer Gas Detection Meter:<br>Model:<br>Serial:<br>Sampling Details:                                 |                                     | - T.                | uflon Tching.                                                                                                                         | _VP JCO#                                                           |             |
| Tracer Gas Detection Meter:         Aodel:         erial:         ampling Details:                    | Method: Sen                         | Summa<br>Canister # | لا بل السلماني المسلماني المسلماني المسلماني المسلماني المسلماني المسلماني المسلماني المسلماني المسلماني المسلم<br>Vacuum at<br>Start | VP JCO #:<br>Vacuum at<br>End                                      |             |
| Fracer Gas Detection Meter:         Aodel:         ierial:         iampling Details:         iampler: | Method: Sen                         | Summa               | Vacuum at                                                                                                                             | Vacuum at                                                          |             |
| Sample ID Date Tim<br>Start                                                                           | Method: Sea<br>ne Time<br>ted Ended | Summa<br>Canister # | Vacuum at<br>Start                                                                                                                    | Vacuum at                                                          | COC         |

| Soil Gas Well Construction Log         Project Name:       Kenilworth Park Landfill         Project Number:       3-0700-11 (126)         Site Location:       Northeast Washington, DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The Johnson Company, Inc.         pg. 1/1           100 State Street, Suite 600         Montpelier, VT         05602           Tel.         (802) 229-4600         VIII                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Well ID: KPN - JCO - 5Y-08 Field Personnel: T120/J.B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Recorded by: J. B                                                                                                                                                                                                                                   |
| Permit Number: Installation Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                     |
| Drilling Method: Drilling Fluid:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fluid Loss During Drilling:                                                                                                                                                                                                                         |
| Ambient PID Reading: 0.0 Borehole PID Reading: 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                     |
| Well Construction Details: (all measurements relative to ground surface)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,,                                                                                                                                                                                                                                                  |
| Riser Pipe Material: $Te + len Te + sin Te Te + si$ | Protective Casing // A<br>Material:<br>Slab Thickness:<br>Material Under Slab:<br>Road Box Seal:<br>Annular Seal Material:<br>Top: 4" Bottom: 6<br>Secondary Seal Material:<br>Top: Bottom:<br>Soil Mixec J<br>fluen V blsck csh / slass<br>De eder |
| ntegrity Testing: Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sampling Concentration                                                                                                                                                                                                                              |
| Date Completed: Injection Pressure:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Rate                                                                                                                                                                                                                                                |
| Tracer Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                     |
| Fracer Gas Detection Meter:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                     |
| Model:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                     |
| Serial:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                     |
| Compling Dataile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | flow Tubing - VP JCO #:                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vacuum at Vacuum at COC<br>Start End                                                                                                                                                                                                                |
| Sample ID Date Time Time Summa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Vacuum at Vacuum at COC                                                                                                                                                                                                                             |

| Project Name: <u>K</u><br>Project Number: <u>3</u>                                                                                                                        | Construc<br>enilworth Park<br>3-0700-11 (126<br>ortheast Washi | Landfill                                 |                                     |                                   | 100 Stat<br>Montpe | hnson Company, l<br>te Street, Suite 600<br>lier, VT 05602<br>02) 229-4600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Inc. pg. 1/1   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------|-------------------------------------|-----------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Well ID: KPN . JC                                                                                                                                                         |                                                                |                                          | onnel:                              | TRO / 5.                          | B                  | Recorded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | by: <u>5.3</u> |
| Permit Number:<br>Drilling Method:                                                                                                                                        | -                                                              | Inst                                     | tallation Date<br>lling Fluid: _    | <u>  0/19/</u>                    | <b>Drill</b>       | er:<br>I Loss During Drill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| Ambient PID Readin                                                                                                                                                        | ig:0. 0                                                        | Bor                                      | rehole PID R                        | eading: 0.                        | PPM                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| Well Construction                                                                                                                                                         | Details: (all me                                               | easurements                              | relative to g                       | round surface)                    | Protecti           | ve Casing NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
| <b>Riser Pipe</b> Ma                                                                                                                                                      | aterial: Tefl                                                  |                                          |                                     |                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| •                                                                                                                                                                         | terial: File                                                   |                                          |                                     |                                   |                    | ckness:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
| Sandpack Ма<br>Гор: <u>)5</u> Во                                                                                                                                          |                                                                |                                          |                                     |                                   |                    | Under Slab:<br>x Seal:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                                                                                                                                                                           |                                                                |                                          |                                     |                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| Screen Ma<br>Top: 18 Bo                                                                                                                                                   | ttom: 24                                                       | 4 **                                     | $\searrow$                          |                                   | Annular<br>Toni I  | Seal Material:<br><u>3</u> Bottom:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | )              |
| Length: Bo                                                                                                                                                                |                                                                |                                          | 1                                   |                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
|                                                                                                                                                                           |                                                                | ·                                        |                                     |                                   |                    | ry Seal Material:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
|                                                                                                                                                                           | /                                                              |                                          |                                     | dinge                             |                    | Bottom:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
| Notes:                                                                                                                                                                    | /<br>                                                          | ction Pressu                             |                                     | ding e                            | e reek/x           | ing Conc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| Notes:                                                                                                                                                                    |                                                                |                                          |                                     |                                   | e Sampi            | ing Conc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l/ston         |
| Notes:                                                                                                                                                                    | Tra                                                            |                                          |                                     |                                   | e Sampi            | ing Conc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l/ston         |
| Notes:<br>Integrity Testing:<br>Date Completed:<br>Fracer Type:<br>Fracer Gas Detectio                                                                                    | n Meter:                                                       | cer Grade: _                             |                                     |                                   | e Sampi            | ing Conc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l/ston         |
| Notes:<br>Integrity Testing:<br>Date Completed:<br>Tracer Type:<br>Fracer Gas Detectio<br>Model:                                                                          | Tra                                                            | cer Grade: _                             |                                     |                                   | e Sampi            | ing Conc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l/ston         |
| Notes:<br>Integrity Testing:<br>Date Completed:<br>Tracer Type:<br>Tracer Gas Detection<br>Model:<br>Serial:<br>Sampling Details:                                         | Tra                                                            | cer Grade: _<br>                         |                                     | Tim                               | e Sampi            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | l/ston         |
| Notes:                                                                                                                                                                    | Tra                                                            | cer Grade: _<br>                         |                                     | Tim                               | e Sampi<br>Rate    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | entration      |
| Notes:<br>Integrity Testing:<br>Date Completed:<br>Fracer Type:<br>Fracer Gas Detection<br>Model:<br>Serial:<br>Sampling Details:<br>Sampler:PO                           | Tra<br>n Meter:                                                | cer Grade: _<br><br><br><br><br><br><br> | ethod: <u>Scw</u><br>Time           | Tim<br>Tim                        | e Sampi<br>Rate    | <u>v</u><br><u>v</u><br><u>v</u><br><u>v</u><br><u>v</u><br><u>v</u><br><u>v</u><br><u>v</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | entration      |
| Notes:<br>Integrity Testing:<br>Date Completed:<br>Fracer Type:<br>Fracer Gas Detection<br>Model:<br>Serial:<br>Sampling Details:<br>Sampler:PO                           | Tra<br>m Meter:<br>/ J.B<br>Date                               | cer Grade: _<br><br><br><br><br><br><br> | ethod: <u>Se w</u><br>Time<br>Ended | Tim<br>Tim<br>Summa<br>Canister # | e Sampi<br>Rate    | <u>V</u><br>Vacuum at<br>End                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | entration      |
| Notes:<br>Integrity Testing:<br>Date Completed:<br>Tracer Type:<br>Tracer Gas Detection<br>Model:<br>Serial:<br>Sampling Details:<br>Sampler:PO<br>Sample ID<br>SAMPLE ID | Tra<br>m Meter:<br>/ J.B<br>Date                               | cer Grade: _<br><br><br><br><br><br><br> | ethod: <u>Se w</u><br>Time<br>Ended | Tim<br>Tim<br>Canister #<br>O128  | e Sampi<br>Rate    | Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>Conce<br>C | entration      |

| Riser Pipe       Material: $\overline{1 + 1 + 5 + 4}$ Sandpack       Material: $\overline{5 + 4} + 5 + 4$ Top:       12"       Bottom:       2 4"         Screen       Material: $5 \cdot 5 \cdot 5$ Top:       18"       Bottom:       2 4"         Length:       6       Diameter: $\sqrt{2}$ "       9         Notes:       0 - 12"       5 - 5 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 +                                                                                                                                                                                                                                                                                                                                                                          | Driller: VNO                                |                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------|
| Ambient PID Reading: $0.0$ Borehole PID Reading: $0.4$ Well Construction Details:       (all measurements relative to ground surface)         Riser Pipe       Material: $Terhor 5act$ Sandpack       Material: $Ferhor 5act$ $Terhor 5act$ Top:       12       Bottom: $2.4$ Screen       Material: $5.5.$ $Top:$ $Terhor 5act$ Top:       10       Bottom: $2.4$ $Terhor 5act$ Notes: $2.4$ $Terhor 5act$ $Terhor 5act$ Notes: $2.4$ $Terhor 5act$ $Terhor 5act$ Integrity Testing:       Diameter: $1/2$ $2.24$ Notes: $2.24$ $2.24$ $2.24$ Tracer Type:       Tracer Grade: $Time$ $Time$ Tracer Gas Detection Meter:       Model: $Sampling Details:$ $Sample ID$ $Date$ $Time$ Sample ID       Date $Time$ $Time$ $Started$ $Canister #$                    | Fluid Loss During I                         |                                                       |
| Riser Pipe       Material: $\overline{\mathcal{Teflen Tbbg}}$ Sandpack       Material: $\overline{\mathcal{Fefler Saul}}$ Top:       12"         Bottom:       24"         Screen       Material:       5.5.         Top:       18"       Bottom:       24"         Length:       6       Diameter: $\sqrt{2}$ "         Notes: $2 - 12$ " $\sqrt{2}$ "         Integrity Testing:       Time       Time         Date Completed:       Injection Pressure:       Time         Tracer Gas Detection Meter:       Model:       Sampling Details:         Sampling Details:       Sample ID       Date       Time       Started       Summa       Vacuus         Sample ID       Date       Time       Time       Started       Ended       Canister #       Started |                                             | Drilling:                                             |
| Integrity Testing:       Time         Date Completed:       Injection Pressure:       Ime         Tracer Type:       Tracer Grade:       Ime         Tracer Gas Detection Meter:       Image: Completed:       Image: Completed:         Model:       Image: Completed:       Image: Completed:         Serial:       Image: Completed:       Image: Completed:         Sampling Details:       Image: Completed:       Image: Completed:         Sampler:       Image: Completed:       Image: Completed:       Image: Completed:         Sample ID       Date       Time       Time       Summa       Vacuus         Sample ID       Date       Time       Time       Summa       Vacuus         Started       Ended       Canister #       Started             | condary Seal Mater<br>Botton<br>Cop: Botton | ial: <u>Gnan. Bet</u><br>m: <u>12</u> "<br>ial:<br>m: |
| Model:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sampling C<br>Rate                          | oncentration                                          |
| Sampler:     TPU/JIB     Method:     Summa     Teflor       Sample ID     Date     Time     Time     Summa     Vacuu       Started     Ended     Canister #     Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |                                                       |
| Started Ended Canister # Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |                                                       |
| -JCO-5V-105 10/17/08 8:27 8:42 0/07 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ibing - VP J                                |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n at Vacuum a                               |                                                       |
| Notes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n at Vacuum a<br>t End                      |                                                       |

| Soil Gas Well Construction Log         Project Name:       Kenilworth Park Landfill         Project Number:       3-0700-11 (126)         Site Location:       Northeast Washington, DC | The Johnson Comp<br>100 State Street, Sui<br>Montpelier, VT 05<br>Tel. (802) 229-4600 | te 600<br>602                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------|
| Well ID: KPN-JCO.SV-10. Field Personnel:                                                                                                                                                | T-B/770 Reco                                                                          | rded by: J·B                       |
| Permit Number: Deep Installation Date:                                                                                                                                                  | 10/15/08 Driller: Vi                                                                  | rugex                              |
| Drilling Method: Drilling Fluid:                                                                                                                                                        |                                                                                       | g Drilling:                        |
| Ambient PID Reading: 0.0 Borehole PID Rea                                                                                                                                               | ng: <u>4.</u> Z                                                                       |                                    |
| Well Construction Details: (all measurements relative to gro                                                                                                                            | d surface)                                                                            | A                                  |
| Riser Pipe Material: Tetlen. Tubility                                                                                                                                                   |                                                                                       |                                    |
| Sandpack Material: <u>f:Hor Sant</u>                                                                                                                                                    | Material Under Slab:                                                                  |                                    |
| Top: <b>5.5</b> Bottom: <b>6.5</b>                                                                                                                                                      | Road Pox Seal:                                                                        |                                    |
|                                                                                                                                                                                         | Annular Seal Mat                                                                      | erial Gran-las Boter               |
| Screen , Material: <u>55</u><br>Top: <u>6.0</u> Bottom: <u>6.5</u>                                                                                                                      | Top: 4.6' Both                                                                        | erial: Gran-las Beter<br>tom: 5.5' |
| Length: $0.5'$ Diameter: $\sqrt{2}$ "                                                                                                                                                   | Secondary Seal Mat                                                                    |                                    |
|                                                                                                                                                                                         | 31                                                                                    | tom:                               |
| 27.36 Dr. Br. / Reg sand/gro                                                                                                                                                            | 2" Br. F.S.L.; 12-24"<br>rel with 673 27 654<br>le class in tip.                      | /5/455.                            |
| Integrity Testing:                                                                                                                                                                      | Time Sampling                                                                         | Concentration                      |
| Date Completed: Injection Pressure:                                                                                                                                                     | Rate                                                                                  | \                                  |
| Tracer Type: Tracer Grade:                                                                                                                                                              |                                                                                       |                                    |
| Tracer Gas Detection Meter:                                                                                                                                                             |                                                                                       |                                    |
| Model:                                                                                                                                                                                  |                                                                                       |                                    |
| Serial:                                                                                                                                                                                 |                                                                                       |                                    |
| Sampling Details:                                                                                                                                                                       |                                                                                       |                                    |
|                                                                                                                                                                                         | no-TeflonTubing-VP                                                                    | JCO #:                             |
| Sample ID Date Time Time<br>Started Ended                                                                                                                                               | Summa Vacuum at Vacuum<br>anister # Start End                                         | n at COC                           |
| 1-510-54.101 (0/17/08 8:37 8:53                                                                                                                                                         | 124 29 1                                                                              | 8227                               |
|                                                                                                                                                                                         |                                                                                       |                                    |
|                                                                                                                                                                                         |                                                                                       |                                    |
|                                                                                                                                                                                         | 3" Jecovery<br>and grower glong ash                                                   | 17 455                             |
| 6-6.3 cleur brown                                                                                                                                                                       | sand                                                                                  | ( ) (3.)                           |
|                                                                                                                                                                                         | 1                                                                                     |                                    |

| Project Name: Project Number:                                                                                                                                                                                           |                                                                      | Landfill                | g                                  |                                                                 | 100 S<br>Mon                         | Johnson Company,<br>State Street, Suite 60<br>tpelier, VT 05602<br>(802) 229-4600 |              |                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------|------------------------------------|-----------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------|--------------|-----------------|
| Well ID: KPN-JC                                                                                                                                                                                                         | 0-54-11                                                              | Field Perso             | onnel:[                            | 195.17                                                          |                                      | Recorded                                                                          | 1 by: 5.13   |                 |
| Permit Number:                                                                                                                                                                                                          | shall                                                                | Ins                     | tallation Date:                    | 10/15/                                                          |                                      |                                                                                   |              | _               |
| Drilling Method:                                                                                                                                                                                                        | Geopros                                                              | <b>7</b> / D.           | Iline Plaid.                       |                                                                 | C1                                   | uid Loss During Dri                                                               | lling:       | _               |
| Ambient PID Read                                                                                                                                                                                                        | ling:                                                                | Bo                      | rehole PID Re                      | ading:/                                                         | Oppm 3                               | 'sauth S                                                                          | , sv-11 ).   | 11-             |
| Well Construction                                                                                                                                                                                                       | n Details: (all me                                                   | easurements             | relative to gro                    | ound surface)                                                   |                                      | <i>J00</i>                                                                        | 1            | - p             |
|                                                                                                                                                                                                                         |                                                                      |                         |                                    |                                                                 |                                      | ctive Casing XIA                                                                  |              |                 |
| Riser Pipe N                                                                                                                                                                                                            | Aaterial: Tella                                                      | Tubly                   | ~                                  |                                                                 |                                      | hickness:                                                                         |              |                 |
|                                                                                                                                                                                                                         | Aaterial: FoH                                                        |                         | $\backslash$                       |                                                                 |                                      | ial Under Slab:                                                                   |              |                 |
| Top: /. 3 B                                                                                                                                                                                                             |                                                                      |                         |                                    | $\cdot$                                                         |                                      | Box Seal:                                                                         |              |                 |
| • •                                                                                                                                                                                                                     | Aaterial: 55                                                         |                         | $\langle \rangle$                  |                                                                 | Annu                                 | lar Seal , Material                                                               | Gun. Bet     |                 |
| Top:                                                                                                                                                                                                                    |                                                                      |                         |                                    |                                                                 | Top:                                 | 0.9 Bottom:                                                                       | 1.3          |                 |
| Length: D                                                                                                                                                                                                               |                                                                      |                         |                                    |                                                                 |                                      |                                                                                   | :            |                 |
| Ū                                                                                                                                                                                                                       | 70                                                                   |                         |                                    |                                                                 |                                      | Bottom:                                                                           |              |                 |
|                                                                                                                                                                                                                         | tive 30                                                              | ° ke                    | Le. 30                             |                                                                 |                                      |                                                                                   |              |                 |
| C                                                                                                                                                                                                                       | 2.12" br                                                             | DON SI                  | 15 10                              | oam                                                             |                                      |                                                                                   | 1            |                 |
|                                                                                                                                                                                                                         | 1 B N 1                                                              |                         | 11                                 |                                                                 | 11                                   | 1 10.70 0                                                                         | ette ette    | -< Ł            |
| 12                                                                                                                                                                                                                      | · 18" b                                                              | rown                    | silfy r                            |                                                                 | the spare                            | 1 18.30"                                                                          | ed/br. 5.147 | 5 \$            |
| رك<br>Integrity Testing:                                                                                                                                                                                                | . 18"                                                                |                         | /                                  |                                                                 | ne San                               | npling Con                                                                        | ed/br. 5.147 | <u>5</u><br>}   |
| 12<br>Integrity Testing:<br>Date Completed:                                                                                                                                                                             |                                                                      | ection Press            |                                    | and, [i]                                                        | ne San                               |                                                                                   |              | <u>5</u>        |
| رك<br>Integrity Testing:                                                                                                                                                                                                |                                                                      | ection Press            |                                    | and, [i]                                                        | ne San                               | npling Con                                                                        |              | <u>5</u>        |
| 12<br>Integrity Testing:<br>Date Completed:                                                                                                                                                                             | Inje                                                                 | ection Press            |                                    | and, (i)                                                        | ne San                               | npling Con                                                                        |              | <u>5</u>        |
| L2<br>Integrity Testing:<br>Date Completed:<br>Tracer Type:                                                                                                                                                             | Inje                                                                 | ection Press            |                                    | and, (i)                                                        | ne San                               | npling Con                                                                        |              | <u></u> 5 &     |
| Integrity Testing:         Date Completed:         Tracer Type:         Tracer Gas Detect                                                                                                                               | ion Meter:                                                           | ection Press            |                                    | and, (i)                                                        | ne San                               | npling Con                                                                        |              | <u></u>         |
| Integrity Testing:         Date Completed:         Tracer Type:         Tracer Gas Detect         Model:         Serial:                                                                                                | ion Meter:                                                           | cer Grade:              | ле:<br>                            | Ti                                                              | ne San<br>R                          | ate Con                                                                           | centration   | -<br>-          |
| Integrity Testing:         Date Completed:         Tracer Type:         Tracer Gas Detect         Model:         Serial:                                                                                                | ion Meter:                                                           | cer Grade:              | ле:<br>                            | Ti                                                              | ne San                               | ate Con                                                                           |              | _5 <del>}</del> |
| Integrity Testing:         Date Completed:         Tracer Type:         Tracer Gas Detect         Model:         Serial:                                                                                                | ion Meter:                                                           | cer Grade:              | ле:<br>                            | Ti                                                              | ne San<br>R                          | ate Con                                                                           | centration   |                 |
| Integrity Testing:         Date Completed:         Tracer Type:         Tracer Gas Detect         Model:         Serial:         Sampling Details:         Sampler:                                                     | $\frac{16^{1}}{100}$ Inje<br>Tra<br>Tra<br>Tra<br>Tra<br>Tra<br>Date | cer Grade:              | rre:                               | але <u>ці</u> і<br>Тіп<br>— — — — — — — — — — — — — — — — — — — | re San<br>R<br>Ceflutth<br>Vacuum at | ppling Con<br>ate Con                                                             | Centration   |                 |
| Integrity Testing:         Date Completed:         Tracer Type:         Tracer Gas Detect         Model:         Serial:         Sampling Details:         Sampler:       1         Sample ID                           | $\frac{16^{1}}{100}$ Inje<br>Tra<br>ion Meter:                       | D Mo<br>Time<br>Started | ethod: <u>Sea</u><br>Time<br>Ended | Tin<br>Tin<br>Mang - 7<br>Summa<br>Canister #                   | eflenTel                             | Vacuum at<br>End                                                                  | D#:          | -               |
| Integrity Testing:         Date Completed:         Tracer Type:         Tracer Gas Detect         Model:         Serial:         Sampling Details:         Sampler:       1         Sample ID                           | $\frac{16^{1}}{100}$ Inje<br>Tra<br>Tra<br>Tra<br>Tra<br>Tra<br>Date | D Mo<br>Time<br>Started | ethod: <u>Sea</u><br>Time<br>Ended | Tin<br>Tin<br>Mang - 7<br>Summa<br>Canister #                   | eflenTel                             | Vacuum at<br>End                                                                  | D#:          |                 |
| Integrity Testing:         Date Completed:         Tracer Type:         Tracer Gas Detect         Model:         Serial:         Sampling Details:         Sampler:         I         Sample ID         J(O - SV - ][ S | $\frac{16^{1}}{100}$ Inje<br>Tra<br>Tra<br>Tra<br>Tra<br>Tra<br>Date | D Mo<br>Time<br>Started | ethod: <u>Sea</u><br>Time<br>Ended | Tin<br>Tin<br>Mang - 7<br>Summa<br>Canister #                   | eflenTel                             | Vacuum at<br>End                                                                  | D#:          |                 |
| Integrity Testing:         Date Completed:         Tracer Type:         Tracer Gas Detect         Model:         Serial:         Sampling Details:         Sampler:       1         Sample ID                           | $\frac{16^{1}}{100}$ Inje<br>Tra<br>Tra<br>Tra<br>Tra<br>Tra<br>Date | D Mo<br>Time<br>Started | ethod: <u>Sea</u><br>Time<br>Ended | Tin<br>Tin<br>Mang - 7<br>Summa<br>Canister #                   | eflenTel                             | Vacuum at<br>End                                                                  | D#:          |                 |
| Integrity Testing:         Date Completed:         Tracer Type:         Tracer Gas Detect         Model:         Serial:         Sampling Details:         Sampler:         I         Sample ID         J(O - SV - ][ S | $\frac{16^{1}}{100}$ Inje<br>Tra<br>Tra<br>Tra<br>Tra<br>Tra<br>Date | D Mo<br>Time<br>Started | ethod: <u>Sea</u><br>Time<br>Ended | Tin<br>Tin<br>Mang - 7<br>Summa<br>Canister #                   | eflenTel                             | Vacuum at<br>End                                                                  | D#:          |                 |

| Soil Gas Well Construction Log                                                                                                                                | 100 State Street                  | ompany, Inc.<br>Suite 600 | pg. 1/1   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------|-----------|
| Project Name:         Kenilworth Park Landfill           Project Number:         3-0700-11 (126)           Site Location:         Northeast Washington, DC    | Montpelier, VT<br>Tel. (802) 229- | 05602<br>4600             |           |
| Well ID: KPN-3CO.SV.11 Field Personnel: TRO / J.B                                                                                                             |                                   | Recorded by:              | J.B       |
| Permit Number: Deep Installation Date: 10/15/08                                                                                                               | Driller:                          | Vivonex                   |           |
| Drilling Method: Geoprebe Drilling Fluid:                                                                                                                     | Fluid Loss D                      | uring Drilling:           | -         |
| Ambient PID Reading: 0.0 Borehole PID Reading: 0.7 pp                                                                                                         | 2 m                               |                           |           |
| Well Construction Details: (all measurements relative to ground surface)                                                                                      |                                   |                           |           |
|                                                                                                                                                               | Protective Casir                  | //                        |           |
| Riser Pipe Material: Jeflun Tubring                                                                                                                           | Material:                         |                           |           |
|                                                                                                                                                               | Slab Thickness:                   |                           |           |
| Sandpack / Material: <u>Filter</u><br>Top: <b>6.3</b> Bottom: <b>6.0</b>                                                                                      | Material Under S                  |                           | 1.17      |
|                                                                                                                                                               | Road Box Seal:                    |                           | J.9       |
| Screen 'Material:                                                                                                                                             | Annular Seal                      | Material:                 | MUTAS 152 |
|                                                                                                                                                               | Top: 5.1                          |                           |           |
| Length: <u>0</u> Diameter: <u>VZ</u>                                                                                                                          | Secondary Seal                    | Material:                 |           |
|                                                                                                                                                               | Тор:                              | Bottom:                   |           |
| Notes: Drive 4 - 42" Recovery                                                                                                                                 |                                   |                           |           |
| 0.8" F.S.L. 8.30" red/brown                                                                                                                                   |                                   |                           |           |
| 30-42"br.silty sand w/some us                                                                                                                                 | sh 4 1Att                         | = glass                   |           |
| Integrity Testing: Time                                                                                                                                       | Sampling                          | Concentra                 | ation     |
| Date Completed: Injection Pressure:                                                                                                                           | Rate                              |                           |           |
| Tracer Type: Tracer Grade:                                                                                                                                    |                                   |                           |           |
| Tracer Gas Detection Meter:                                                                                                                                   |                                   |                           |           |
| Model:                                                                                                                                                        |                                   |                           |           |
| Serial:                                                                                                                                                       | [                                 |                           |           |
|                                                                                                                                                               |                                   |                           |           |
|                                                                                                                                                               |                                   |                           |           |
|                                                                                                                                                               | 7.4.                              | <b>&gt;</b> 100 "         |           |
| Sampling Details:<br>Sampler: 140 (J. 13 Method: Summa - Teflon                                                                                               | Tubing - V                        | ∽ JCO #:                  |           |
| Sampler:     TPO / J.13     Method:     Summa - Teflon       Sample ID     Date     Time     Time     Summa     Vacu                                          | um at Vac                         | uum at                    | сос       |
| Sampler:     The     Time     Summa     Vacu       Sample ID     Date     Time     Time     Summa     Vacu       Started     Ended     Canister #     Started | um at Vac<br>tart                 |                           |           |
| Sampler:     The     Time     Summa     Vacu       Sample ID     Date     Time     Time     Summa     Vacu       Started     Ended     Canister #     Started | um at Vac<br>tart                 | uum at<br>End             |           |
| Sampler:     The     Time     Summa     Vacu       Sample ID     Date     Time     Time     Summa     Vacu       Started     Ended     Canister #     Started | um at Vac<br>tart                 | uum at<br>End             | COC       |
| Sampler:                                                                                                                                                      | um at Vac<br>tart                 | uum at<br>End             | COC       |
| Sampler:                                                                                                                                                      | um at Vac<br>tart                 | uum at<br>End             | COC       |
| Sampler:     The     Time     Summa     Vacu       Sample ID     Date     Time     Time     Summa     Vacu       Started     Ended     Canister #     Started | um at Vac<br>tart                 | uum at<br>End             | COC       |
| Sampler:                                                                                                                                                      | um at Vac<br>tart                 | uum at<br>End             | COC       |

| Soil Gas Well<br>Project Name: <u>Ke</u>      | nilworth Park   | Landfill        |                    |                     | 100 St<br>Montp    | ohnson Company,<br>ate Street, Suite 600<br>belier, VT 05602 |             |
|-----------------------------------------------|-----------------|-----------------|--------------------|---------------------|--------------------|--------------------------------------------------------------|-------------|
| Project Number: <u>3</u><br>Site Location: No |                 |                 |                    |                     | Tel. (             | 802) 229-4600                                                |             |
| Well ID: KPN.J (                              | 0.51.12         | Field Perso     |                    |                     |                    |                                                              |             |
| Permit Number:                                | _               | Inst            | allation Date      | 10/15               | /09 Dri            | Iler: Viro                                                   | 1ex         |
| Drilling Method:                              | 100010          | pe Dri          | lling Fluid: _     |                     | Flu                | id Loss During Dril                                          | ling:       |
| Ambient PID Reading                           | g: 0.0          | Bor             | ehole PID R        | eading:             | O.Ippm             |                                                              |             |
| Well Construction I                           | Details: (all m | easurements     | relative to g      | round surface)      |                    |                                                              |             |
|                                               |                 |                 |                    |                     | Protect            | tive Casing NA                                               |             |
|                                               |                 |                 |                    |                     |                    | d:                                                           |             |
| Riser Pipe Ma                                 | -               |                 |                    |                     | Slab Th            | ickness:                                                     |             |
| Sandpack , Mat                                |                 |                 | $\backslash$       |                     | Materia            | I Under Slab:                                                |             |
| Top: <u>5.67</u> Bot                          | -               |                 |                    |                     | Road B             | ox Seal:                                                     | Carlas      |
| Screen , Mat                                  | terial: $5.5$   | ·               | $\sim \sim$        |                     | Annula             | r Seal Material:                                             | (7544.) 6.5 |
| Top: 6 Bot                                    | tom:6           | .5              | $\sim$             |                     | Top: _             | 4.83 Bottom:                                                 | 5.67        |
| Length: 0.5' Dia                              | meter:          | Y <b>2</b> *    |                    |                     | Second             | ary Seal Material:                                           |             |
|                                               | .(              |                 | L                  |                     | Top:               | Bottom:                                                      |             |
| Notes: Drive                                  |                 | 19 Rec          | overy              |                     |                    |                                                              | <u> </u>    |
|                                               | red/1           | rown            | Sund               | and gra             |                    | Loarse 2                                                     | -3" ban     |
|                                               | of gr           | an. F.V.        | CI                 | 2 2 3               | 0 255              |                                                              |             |
| Integrity Testing:                            |                 |                 |                    | Ti                  | ne Samj            |                                                              | entration   |
| Date Completed:                               | Inje            | ection Pressu   | re:                |                     | Ra                 | te                                                           |             |
| Tracer Type:                                  | Tra             | cer Grade:      |                    | _/_                 |                    |                                                              |             |
| Tracer Gas Detection                          | n Meter:        |                 | /                  |                     |                    |                                                              |             |
| Model:                                        |                 |                 |                    |                     |                    |                                                              |             |
| Serial:                                       |                 |                 |                    |                     |                    |                                                              |             |
|                                               |                 | _ /             |                    |                     |                    |                                                              |             |
| Sampling Details:<br>Sampler:P                | 0/50            | . Me            | ethod: <u>Se I</u> | <u>4ma - Te</u>     | flen Te bring      | JCO                                                          | #:          |
| Sample ID                                     | Date            | Time<br>Started | Time<br>Ended      | Summa<br>Canister # | Vacuum at<br>Start | Vacuum at<br>End                                             | COC         |
|                                               |                 |                 |                    |                     | Start              | End                                                          |             |
| N.JCO.SV-12                                   | 80/11/08        | 7:40            | 8:01               | 0114                | 29                 | >1                                                           | 8227        |
|                                               |                 |                 |                    |                     |                    |                                                              |             |
|                                               |                 |                 |                    |                     |                    |                                                              |             |
| NA4                                           | 4-6             | .5              | 30                 | " ne.cos            | eri                |                                                              |             |
| Notes: 1) IV                                  |                 |                 |                    |                     |                    |                                                              |             |
| Notes: Drive                                  | F               | ne R            | eddish             | Sand                | - no 3-            | ones                                                         |             |

| Soil Gas Well Construction Log         Project Name:       Kenilworth Park Landfill         Project Number:       3-0700-11 (126)         Site Location:       Northeast Washington, DC | The Johnson Company, Inc.         pg. 1/1           100 State Street, Suite 600         Montpelier, VT         05602           Tel.         (802) 229-4600         VE |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Well ID: KPN · JCO · SV · 17 Field Personnel: TP20 / J.                                                                                                                                 | 13 Recorded by: J.B                                                                                                                                                   |
| Permit Number: Installation Date:                                                                                                                                                       | 100 Driller: VN01ex                                                                                                                                                   |
| Drilling Method: (100 probe Drilling Fluid:                                                                                                                                             |                                                                                                                                                                       |
| Ambient PID Reading: 0.0 Borehole PID Reading: 0.1                                                                                                                                      |                                                                                                                                                                       |
| Well Construction Details: (all measurements relative to ground surface)                                                                                                                |                                                                                                                                                                       |
|                                                                                                                                                                                         | Protective Casing NA                                                                                                                                                  |
|                                                                                                                                                                                         | Material:                                                                                                                                                             |
| Riser Pipe Material: Tetlen T-bhog                                                                                                                                                      | Slab Thickness:                                                                                                                                                       |
| Sandpack , Material: <u>filler</u>                                                                                                                                                      | Material Under Slab:                                                                                                                                                  |
| Top: <u>5.0</u> Bottom: <u>6.0</u>                                                                                                                                                      | Road Box Seal:                                                                                                                                                        |
| Screen Material: 5.5.                                                                                                                                                                   | Annular Seal Material: Granulas Betz                                                                                                                                  |
| Screen , Material: 5.5.<br>Top: 5.5 Bottom: 6.0                                                                                                                                         | Top: 4.3' Bottom: 5.0                                                                                                                                                 |
| Length: Diameter:                                                                                                                                                                       | Secondary Seal Material:                                                                                                                                              |
| 1'SONAM ST MW-11                                                                                                                                                                        | Top: Bottom:                                                                                                                                                          |
| Notes: Drive 0-4'; 28" Recovery                                                                                                                                                         |                                                                                                                                                                       |
| 0-12" tan fine sandy loan                                                                                                                                                               | ; reddish sand grave                                                                                                                                                  |
|                                                                                                                                                                                         | wrighter w/depth                                                                                                                                                      |
| Integrity Testing:                                                                                                                                                                      |                                                                                                                                                                       |
| Date Completed: Injection Pressure:                                                                                                                                                     | Rate                                                                                                                                                                  |
| Tracer Type: Tracer Grade:                                                                                                                                                              |                                                                                                                                                                       |
|                                                                                                                                                                                         |                                                                                                                                                                       |
| Tracer Gas Detection Meter:                                                                                                                                                             |                                                                                                                                                                       |
| Model:                                                                                                                                                                                  |                                                                                                                                                                       |
| Serial:                                                                                                                                                                                 |                                                                                                                                                                       |
| Sampling Details:                                                                                                                                                                       |                                                                                                                                                                       |
| Sampler: Method: Summa - Te                                                                                                                                                             | Hontubing-VP JCO #:                                                                                                                                                   |
| Sample ID Date Time Time Summa                                                                                                                                                          | Vacuum at Vacuum at COC                                                                                                                                               |
| Started Ended Canister #                                                                                                                                                                | Start End                                                                                                                                                             |
|                                                                                                                                                                                         | 30.5" 2" 0227                                                                                                                                                         |
| - Ten sul 12 10/2/0 1.12 7.21                                                                                                                                                           | 90.5 7 1 1011 I                                                                                                                                                       |
| # - JLO. 54.13 10/17/08 7:12 7:36                                                                                                                                                       |                                                                                                                                                                       |
| pl-JLO.54.13 10/17/08 7:12 7:36                                                                                                                                                         |                                                                                                                                                                       |
|                                                                                                                                                                                         |                                                                                                                                                                       |
|                                                                                                                                                                                         | covery reddish sand                                                                                                                                                   |
|                                                                                                                                                                                         |                                                                                                                                                                       |
|                                                                                                                                                                                         |                                                                                                                                                                       |

| Riser Pipe Material:   7.0p: 16   Bottom: 24*   Screen Material:   Material: 57   Screen Material:   Material: 57   Top: 16   Bottom: 24*   Length: 6*   Diameter: 17*   Notes: 1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fluid Loss I<br>rotective Casi<br>laterial:<br>ab Thickness:<br>laterial Under<br>oad Box Seal:<br>nnular Seal<br>op: //4*<br>econdary Seal<br>op:<br>                 | During Drillin ing ArrA Slab: Material: Bottom:        | (7 Ruo<br>2 r 1 6'       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------|
| Permit Number: Installation Date: 10/15/08   Drilling Method: Aaud au 5 (1) Drilling Fluid:   Ambient PID Reading: 0 · 0 Borehole PID Reading: 5.3 ppm   Well Construction Detalls: (all measurements relative to ground surface)   Riser Pipe Material: 7 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Driller:<br>Fluid Loss I<br>rotective Casi<br>laterial:<br>ab Thickness:<br>laterial Under<br>ooad Box Seal:<br>nnular Seal<br>op:<br>econdary Seal<br>op:<br>Sampling | During Drillin ing MMA Slab: Material: Bottom: Bottom: | ις:<br>(7 αυ<br>2 Υ 1 ι' |
| Drilling Method: Aud auget   Ambient PID Reading: 0   Borehole PID Reading:   J.3 ppm   Well Construction Details: (all measurements relative to ground surface) Riser Pipe Material:   Riser Pipe Material:   J.1 J.1   Sandpack Material:   Material: J.1   J.1 Bottom:   24* R   Screen Material:   Material: J.2   Top: 15*   Bottom: 24*   Length: 6*   Diameter: Yz*   Notes: Reddi3h   Saud grave   Time Tacer Type:   Tracer Gas Detection Meter:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fluid Loss I<br>rotective Casi<br>laterial:<br>ab Thickness:<br>laterial Under<br>oad Box Seal:<br>nnular Seal<br>op: //4*<br>econdary Seal<br>op:<br>                 | During Drillin                                         | (700<br>247 16"          |
| Ambient PID Reading: <b>b</b> • 0   Well Construction Details: (all measurements relative to ground surface)   Riser Pipe Material:   Top: 14   Bottom: 24   Screen Material:   Material: 27   Top: 18   Bottom: 24   Length: 6   Diameter: 72   Totes: Reddi34   Source Source   Tracer Type: Tracer Grade:   Tracer Gas Detection Meter:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rotective Casi<br>laterial:<br>lab Thickness:<br>laterial Under<br>oad Box Seal:<br>nnular Seal<br>op: // 4*<br>econdary Seal<br>op:<br>Sampling                       | Slab:<br>Material:<br>Bottom:<br>Material:<br>Bottom:  | (700<br>247 16"          |
| Riser Pipe       Material: $TelhonTubing       N         Sandpack       Material:       # filturJound       N         Fop:       Ib       Bottom:       24^{\circ}       N         Screen       Material:       57       N         Fop:       Ib       Bottom:       24^{\circ}       N         Corp:       Ib       Bottom:       24^{\circ}       N         Length:       6^{\circ}       Diameter:       \sqrt{2^{\circ}}       Notes:       \Lambda eddi3h       Sand       g-rave         Integrity Testing:       Injection Pressure:       Time       Time         Date Completed:       Injection Pressure:       Time         Tracer Type:       Tracer Grade:       Time         Tracer Gas Detection Meter:       Tracer Grade:       Time   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | laterial:<br>lab Thickness:<br>laterial Under<br>oad Box Seal:<br>mular Seal<br>pp: //4*<br>scondary Seal<br>pp:<br>Sampling                                           | Slab:<br>Material:<br>Bottom:<br>Material:<br>Bottom:  | (700<br>24 11"           |
| Riser Pipe Material:   7.0p: 16   Bottom: 24*   Screen Material:   Material: 57   Screen Material:   Material: 57   Top: 16   Bottom: 24*   Length: 6*   Diameter: 17*   Notes: 1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | laterial:<br>lab Thickness:<br>laterial Under<br>oad Box Seal:<br>mular Seal<br>pp: //4*<br>scondary Seal<br>pp:<br>Sampling                                           | Slab:<br>Material:<br>Bottom:<br>Material:<br>Bottom:  | (700<br>24 11"           |
| Riser Pipe Material: 1 + filter Janet   Sandpack Material: # filter Janet   Top: 14 Bottom: 24   Screen Material: 27   Top: 18 Bottom: 24   Top: 18 Bottom: 24   Length: 6 Diameter: 72   Notes: 1 1 1   Integrity Testing: 1 1   Date Completed: Injection Pressure: 1   Fracer Type: Tracer Grade: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ab Thickness:<br>(aterial Under<br>oad Box Seal:<br>anular Seal<br>op: /4*<br>econdary Seal<br>op:<br>Sampling                                                         | Slab:<br>Material:<br>Bottom:<br>Material:<br>Bottom:  | (700<br>24 11"           |
| Sandpack Material: # filterSand   Fop: 14 Bottom: 24*   Screen Material: 57   Top: 18 Bottom: 24*   Length: 6 Diameter: 72*   Notes: 1 Addi3h Sand   Screen Material: 57   Notes: 1 Addi3h   Sandpack Sand grave   Tracer Type:   Tracer Grade:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | laterial Under<br>load Box Seal:<br>nnular Seal<br>op: // .<br>econdary Seal<br>op:<br>                                                                                | Slab:<br>Material:<br>Bottom:<br>Material:<br>Bottom:  | (700<br>24 11"           |
| Top: 16   Bottom: 24*   Screen Material:   Material: 57   Top: 18   Bottom: 24*   Length: 6*   Diameter: 72*   Notes: 10   Addi34 Sand   Sand 9*ave   Time Taker Grade:  Fracer Type: Tracer Grade:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | oad Box Seal:<br>nular Seal<br>op: <u>/4*</u><br>econdary Seal<br>op:<br>Sampling                                                                                      | Material:<br>Bottom:<br>Material:<br>Bottom:           | (700<br>24 11"           |
| Screen Material: 57   Top: 8" Bottom: 24"   Length: 6" Diameter: 12"   Length: 6" Diameter: 12"   Notes: 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nnular Seal<br>pp: <u>14*</u><br>econdary Seal<br>pp:<br>Sampling                                                                                                      | Material:<br>_ Bottom:<br>Material:<br>_ Bottom:       | (700<br>24 16"           |
| Top: 18 Bottom: 2.4"   Length: 6 Diameter: 72"   Notes: 1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | op: <u>14*</u><br>condary Seal<br>op:<br>Sampling                                                                                                                      | _ Bottom:<br>Material:<br>Bottom:                      | 24 16"                   |
| Length:   Diameter:     Notes:     Reddi3h Sand   grave     Treer   Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | scondary Seal                                                                                                                                                          | Material:<br>Bottom:                                   |                          |
| Notes: <u>Reddi3h</u> Sand     grave       Integrity Testing:     Time       Date Completed:     Injection Pressure:       Fracer Type:     Tracer Grade:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sampling                                                                                                                                                               | _ Bottom:                                              |                          |
| Notes: <u>Aeddi34</u> <u>Sand</u> <u>grave</u><br>Integrity Testing: <u>Time</u><br>Date Completed: Injection Pressure: <u></u><br>Fracer Type: <u>Tracer Grade:</u> <u>Fracer Gas Detection Meter:</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sampling                                                                                                                                                               |                                                        |                          |
| Integrity Testing: Time Date Completed: Injection Pressure: Tracer Grade: Tracer Grade |                                                                                                                                                                        | Concen                                                 | ntration                 |
| Tracer Type: Tracer Grade: Tracer Gas Detection Meter:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rate                                                                                                                                                                   |                                                        |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                        |                                                        |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                        |                                                        |                          |
| 10(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                        |                                                        |                          |
| Model:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                        |                                                        |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                        |                                                        |                          |
| Sampling Details:<br>Sampler: <u>7 No / J-B</u> Method: <u>Somme-Tefler 7</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Johng-V                                                                                                                                                                | /P JCO #:                                              |                          |
| Sample ID Date Time Time Summa Vacuur<br>Started Ended Canister # Star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                        | cuum at<br>End                                         | COC                      |
| 5.500.54.01 10/17/08 13:04 13:29 1072 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                        | ٢١                                                     | 8118                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                        |                                                        |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                        |                                                        |                          |
| votes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                        |                                                        |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                        |                                                        |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                        |                                                        |                          |

| Soil Gas Well<br>Project Name: K<br>Project Number:<br>Site Location: N                                                                                           | enilworth Parl<br>3-0700-11 (12                                                                     | k Landfill<br>6)                                           |                             |                                 | 100 Sta<br>Montpe                                                         | hnson Company, I<br>ate Street, Suite 600<br>elier, VT 05602<br>602) 229-4600                        | nc. pg. 1/1                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------|---------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Well ID: KPS.JC                                                                                                                                                   | 0.54.02                                                                                             | Field Perso                                                | onnel:                      | TRO (                           | J.B                                                                       | Recorded b                                                                                           | y: J.B                                        |
| Permit Number:<br>Drilling Method:                                                                                                                                | and aug                                                                                             | C Dri                                                      | lling Fluid: _              |                                 | Flui                                                                      | ler:<br>d Loss During Drilli                                                                         |                                               |
| Well Construction                                                                                                                                                 | Details: (all m                                                                                     | neasurements                                               | relative to g               | round surface)                  | .,                                                                        |                                                                                                      |                                               |
| Sandpack         M.           Top:         15 <sup>++</sup> Bo           Screen         M.           Top:         2 <sup>++</sup> Bo                              | aterial: Tef<br>aterial: <u>F: /1</u><br>aterial: <u>2</u><br>aterial: <u>5</u><br>ttom: <u>2</u> : | 5                                                          |                             |                                 | Material<br>Slab Thi<br>Material<br>Road Bo<br>Annular<br>Top:<br>Seconds | ive Casing VA<br>:<br>ickness:<br>Under Slab:<br>pox Seal:<br>r Seal Material:<br>Bottom:<br>Bottom: | Grouvlar<br>15'                               |
| Notes: Blow                                                                                                                                                       | n fire                                                                                              |                                                            |                             | stones                          |                                                                           |                                                                                                      |                                               |
| Notes: <u><u></u><u></u><u><u></u><u><u></u><u></u><u><u></u><u></u><u><u></u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u></u></u></u> | n fine<br>ked va                                                                                    | lve e                                                      | n Exa                       | tksoon<br>Tin                   | Buildia                                                                   |                                                                                                      |                                               |
| Notes: B/ov<br>Crac<br>Integrity Testing:                                                                                                                         | In fine<br>ked va<br>Inju<br>Tra                                                                    | lve e                                                      | n Exa                       | tksoon<br>Tin                   | Buildin<br>ne Samp                                                        |                                                                                                      | sprayin                                       |
| Notes: <u>F/ov</u><br><u>Crac</u><br>Integrity Testing:<br>Date Completed:<br>Tracer Type:<br>Tracer Gas Detection<br>Model:                                      | in fine<br>ked ya<br>Inju<br>Tra<br>on Meter:                                                       | ection Pressu<br>acer Grade:                               | 1 <b>Ba</b>                 | Tir                             | Buildin<br>ne Samp                                                        |                                                                                                      | אליאל איז |
| Notes: B/ON<br>Crac<br>Integrity Testing:<br>Date Completed:<br>Tracer Type:<br>Tracer Gas Detection<br>Model:<br>Serial:                                         | in fine<br>ked ya<br>Inju<br>Tra<br>on Meter:                                                       | ection Pressu<br>acer Grade:                               | 1 <b>Ba</b>                 | Tir                             | Buildia                                                                   |                                                                                                      | אליאל איז |
| Notes:<br>Crac<br>Integrity Testing:<br>Date Completed:<br>Tracer Type:<br>Tracer Gas Detection<br>Model:<br>Serial:<br>Sampling Details:<br>Sampler:             | In fine<br>ked va<br>Inju<br>Tra<br>on Meter:<br>20 / T · 1<br>Date                                 | ection Pressu<br>acer Grade:<br>3<br>Me<br>Time<br>Started | A         Ba           rre: | Tin<br>Tin<br>mma - 7e<br>Summa | Buildin<br>ne Samp<br>Rat                                                 | Conce                                                                                                | <b>کی جرح نام</b>                             |

|                                                                                                                 |                                | on Log                             |                         |                      | Johnson Company, I<br>State Street, Suite 600 | nc. pg. 1 |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------|-------------------------|----------------------|-----------------------------------------------|-----------|
| Project Number:                                                                                                 | ortheast Washin                | gton, DC                           | 1                       | Mor<br>Tel.          | tpelier, VT 05602<br>(802) 229-4600           |           |
| Well ID: KPS · J                                                                                                | (co.51.03 F                    | ield Personnel:                    | TRO/J                   | · 13                 | Recorded b                                    | y: JrB    |
| Permit Number:                                                                                                  | ~                              | Installation                       | Date: 10/1              | 5/08 I               | Driller:                                      |           |
| Drilling Method:                                                                                                |                                |                                    |                         |                      | luid Loss During Drilli                       | ng:       |
| Ambient PID Readin                                                                                              | ng: 0.0                        | Borehole F                         | 'ID Reading:/           | .0 ppm               |                                               |           |
| Well Construction                                                                                               | Details: (all mea              | surements relative                 | e to ground surfac      | ce)                  |                                               |           |
|                                                                                                                 |                                |                                    |                         |                      | ective Casing NA                              |           |
| Riser Pipe M                                                                                                    | aterial: Te fla                | + 11.                              |                         |                      | rial:                                         |           |
|                                                                                                                 |                                |                                    |                         | \<br>\               | Thickness:                                    |           |
| - //                                                                                                            | aterial: $f:Her$               | sann                               |                         |                      | rial Under Slab:                              |           |
| -                                                                                                               | ottom: 2 C                     | \                                  |                         | $\langle \rangle$    | Box Seal:                                     | C. P      |
|                                                                                                                 | aterial: <u>55</u>             |                                    |                         | Annu                 | lar Seal Material:                            | Gren. D   |
| Top: <b>8</b> Bo                                                                                                | -                              |                                    |                         | \<br>\               | Bottom:                                       |           |
| Length: <u>6</u> Dia                                                                                            | ameter: <u> </u>               |                                    |                         |                      | dary Seal Material:                           |           |
|                                                                                                                 | 11                             | ,                                  |                         | Top:                 | Bottom:                                       |           |
| Notes: <u>PC</u>                                                                                                | 1/ brow 1                      | 1 sagd                             |                         |                      |                                               |           |
| şu                                                                                                              | 201 50                         | nes / bi                           | ize c                   | higs,                | conjact                                       | ·         |
|                                                                                                                 |                                | /                                  |                         |                      |                                               |           |
| Integrity Testing:                                                                                              |                                |                                    |                         |                      | npling Conce<br>Rate                          | entration |
|                                                                                                                 | Inject                         | <u></u>                            | <u> </u>                |                      |                                               |           |
| Date Completed:                                                                                                 |                                |                                    |                         |                      |                                               |           |
| Date Completed:                                                                                                 | Trace                          | r Grade:                           |                         |                      | 1                                             |           |
| -                                                                                                               |                                | er Grade:                          |                         |                      |                                               |           |
| Tracer Type:                                                                                                    | on Meter:                      |                                    |                         |                      |                                               |           |
| Tracer Type:                                                                                                    | on Meter:                      | er Grade:                          |                         |                      |                                               |           |
| Tracer Type:<br>Tracer Gas Detection<br>Model:<br>Serial:                                                       | on Meter:                      | er Grade:                          |                         |                      |                                               |           |
| Tracer Type:<br>Tracer Gas Detection<br>Model:<br>Serial:<br>Sampling Details:                                  | on Meter:                      |                                    | S 7                     |                      |                                               |           |
| Tracer Type:<br>Tracer Gas Detection<br>Model:<br>Serial:<br>Sampling Details:                                  | on Meter:                      |                                    | S-mana, 7               | et/onTubin           | y-VP JCO #                                    | /:        |
| Tracer Type:<br>Tracer Gas Detection<br>Model:<br>Serial:<br>Sampling Details:                                  | 0.00/j.12<br>0.00/j.12<br>Date | Method:<br>Time Tin                | ne Summa                | Vacuum at            | Vacuum at                                     | /:<br>COC |
| Tracer Type:<br>Tracer Gas Detection<br>Model:<br>Serial:<br>Sampling Details:<br>Sampler:T<br>Sample ID        | Don Meter:                     | Method:                            | ne Summa                | Vacuum at<br># Start | Vacuum at<br>End                              |           |
| Tracer Type:<br>Tracer Gas Detection<br>Model:<br>Serial:<br>Sampling Details:<br>Sampler:                      | Don Meter:                     | Method:<br>Time Tin                | ne Summa<br>ed Canister | Vacuum at<br># Start | Vacuum at<br>End                              |           |
| Tracer Type:<br>Tracer Gas Detection<br>Model:<br>Serial:<br>Sampling Details:<br>Sampler:T<br>Sample ID        | Don Meter:                     | Method:<br>Time Tin<br>Started End | ne Summa<br>ed Canister | Vacuum at<br># Start | Vacuum at<br>End                              | COC       |
| Tracer Type:<br>Tracer Gas Detection<br>Model:<br>Serial:<br>Sampling Details:<br>Sampler:T<br>Sample ID        | Don Meter:                     | Method:<br>Time Tin<br>Started End | ne Summa<br>ed Canister | Vacuum at<br># Start | Vacuum at<br>End                              | COC       |
| Tracer Type:<br>Tracer Gas Detection<br>Model:<br>Sampling Details:<br>Sampler:T<br>Sample ID<br>PS -TLO. SN-D3 | Don Meter:                     | Method:<br>Time Tin<br>Started End | ne Summa<br>ed Canister | Vacuum at<br># Start | Vacuum at<br>End                              | COC       |
| Tracer Type:<br>Tracer Gas Detection<br>Model:<br>Serial:<br>Sampling Details:<br>Sampler:T<br>Sample ID        | Don Meter:                     | Method:<br>Time Tin<br>Started End | ne Summa<br>ed Canister | Vacuum at<br># Start | Vacuum at<br>End                              | COC       |
| Tracer Type:<br>Tracer Gas Detection<br>Model:<br>Sampling Details:<br>Sampler:T<br>Sample ID<br>PS -TLO. SN-D3 | Don Meter:                     | Method:<br>Time Tin<br>Started End | ne Summa<br>ed Canister | Vacuum at<br># Start | Vacuum at<br>End                              | COC       |
| Tracer Type:<br>Tracer Gas Detection<br>Model:<br>Serial:<br>Sampling Details:                                  | on Meter:                      |                                    | Summa, 7                | et/on Tusin          | y-VP JCO#                                     |           |

F:\STANDARD\JCO Forms\SoilGasWell2.pub

| Soil Gas Well Construction Log Project Name: Kenilworth Park Landfill                                                                          | The Johnson Company, Inc.<br>100 State Street, Suite 600<br>Montpelier, VT 05602 |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Project Number: <u>3-0700-11 (126)</u><br>Site Location: Northeast Washington, DC                                                              | Tel. (802) 229-4600                                                              |
| Well ID: KPS-JCO . SN-06 Field Personnel: T120/J. 1                                                                                            | 3 Recorded by: J.B                                                               |
| Permit Number: Installation Date:                                                                                                              | Driller: Vironex                                                                 |
| Drilling Method: Geoprope Drilling Fluid:                                                                                                      |                                                                                  |
| Ambient PID Reading: 0.0 Borehole PID Reading: 1, 8                                                                                            |                                                                                  |
| Well Construction Details: (all measurements relative to ground surface)                                                                       |                                                                                  |
|                                                                                                                                                | Protective Casing NA                                                             |
| -11                                                                                                                                            | Material:                                                                        |
| Riser Pipe Material: TetlenT. b.h.                                                                                                             | Slab Thickness:                                                                  |
| Sandpack Material: Fritter Scord                                                                                                               | Material Under Slab:                                                             |
| Top: <u>40"</u> Bottom: <u>46"</u>                                                                                                             | Road Box Seal:                                                                   |
| Screen Material: <u>55</u>                                                                                                                     | Annular Seal Material:                                                           |
| Top: <u>42''</u> Bottom: <u>48</u>                                                                                                             | Top: 36" Bottom: 20"                                                             |
| Length: $6^{\circ}$ Diameter: $\sqrt{2^{\circ}}$                                                                                               | Secondary Seal Material: Granulor                                                |
|                                                                                                                                                | Top: 40" Bottom: 36                                                              |
| Notes: Drive 0-9'-4'rec 0-10" 1000                                                                                                             |                                                                                  |
|                                                                                                                                                | k chips                                                                          |
| 36.48" darke br. aver silty s                                                                                                                  | sand 2.3 lens trace wood                                                         |
|                                                                                                                                                |                                                                                  |
| Integrity Testing: Time                                                                                                                        | Sampling Concentration<br>Rate                                                   |
| Date Completed: Injection Pressure:                                                                                                            |                                                                                  |
| Tracer Type: Tracer Grade:                                                                                                                     |                                                                                  |
|                                                                                                                                                |                                                                                  |
| Tracer Gas Detection Meter:                                                                                                                    |                                                                                  |
|                                                                                                                                                |                                                                                  |
| Model:                                                                                                                                         | <u>- V7</u> JCO #:<br>Vacuum at Vacuum at COC<br>Start End                       |
| Model:                                                                                                                                         | Vacuum at Vacuum at COC                                                          |
| Sampler:     T20/J·B     Method:     Tetion Tobing       Sample ID     Date     Time     Time     Summa       Started     Ended     Canister # | Vacuum at Vacuum at COC<br>Start End                                             |
| Model:                                                                                                                                         | Vacuum at<br>Start End COC                                                       |
| Model:                                                                                                                                         | Vacuum at<br>Start End COC                                                       |
| Model:                                                                                                                                         | Vacuum at<br>Start End COC<br>29° < 1 8228                                       |

٨

F:\STANDARD\JCO Forms\SoilGasWell2.pub

| Project Number:                                                                         | enilworth Parl<br>3-0700-11 (12 | 6)                    | 5                                  |                                 | 100<br>Mc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e Johnson C<br>0 State Street<br>ontpelier, VT<br>1. (802) 229- | Suite 600<br>05602      | c. pg. 1/1 |
|-----------------------------------------------------------------------------------------|---------------------------------|-----------------------|------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------|------------|
| Site Location: N<br>Well ID: KPS. 50                                                    | ortheast Wash                   | Field Pares           | mal                                | TRO/                            | JЗ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                 | Descrided by            | . JB       |
| Permit Number:                                                                          |                                 |                       |                                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                 |                         |            |
| Drilling Method:                                                                        |                                 |                       |                                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                 |                         | g:         |
| Ambient PID Readin                                                                      |                                 |                       |                                    | eading:                         | and the second se | 1 1414 2000 2                                                   | ung binni               | 6'         |
| Well Construction                                                                       | Details: (all m                 |                       |                                    |                                 | ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                 |                         |            |
| Dian Bina Ad                                                                            | aterial: T=+                    | T.I.s.                |                                    |                                 | Mat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tective Casin<br>erial:                                         |                         |            |
| -                                                                                       |                                 |                       |                                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                 |                         |            |
|                                                                                         | aterial: <u>f</u> ;1+           |                       | $\setminus$ $\setminus$            |                                 | <b>`</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | erial Under S                                                   |                         |            |
|                                                                                         | ottom: <u>20</u>                |                       |                                    |                                 | $\langle \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d Box Seal:                                                     |                         | A 51       |
|                                                                                         | aterial: 5                      | <u> </u>              | $\smallsetminus$                   |                                 | \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ular Seal                                                       | Material:               | Gran. Bet  |
| Top: 4 Bo                                                                               |                                 | 0″                    | $\rightarrow$                      |                                 | Top:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10"                                                             | Bottom:                 | 12"        |
| Length: Dis                                                                             | ameter:                         |                       |                                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                 |                         |            |
| 10                                                                                      | ' and                           | $\mathcal{O}$         |                                    |                                 | $\bigcap \cap^{Top:}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 | Bottom:                 |            |
| Notes: $\frac{10}{10}$                                                                  | East                            | 07 2                  | ewer                               | 218'N.                          | if force                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                 | . 1 . 1                 | . 14       |
|                                                                                         | <b>5</b> 7                      | an                    | Sana                               | gravel                          | - some                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | asn                                                             | Mixee                   | h bolt     |
|                                                                                         |                                 |                       |                                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T                                                               |                         | 2.4        |
| Integrity Testing:                                                                      |                                 |                       |                                    | Ti                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mpling<br>Rate                                                  | Concen                  | tration    |
| Date Completed:<br>Tracer Type:                                                         |                                 |                       |                                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | itate                                                           |                         |            |
| racer rype:                                                                             | 112                             | icer Grade: _         |                                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                 |                         |            |
|                                                                                         |                                 |                       |                                    |                                 | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                 |                         |            |
|                                                                                         | on Meter:                       |                       |                                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                 |                         |            |
| Tracer Gas Detection                                                                    |                                 |                       |                                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\leq$                                                          |                         |            |
| Tracer Gas Detection                                                                    |                                 |                       |                                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\leq$                                                          |                         |            |
| Tracer Gas Detection<br>Model:<br>Serial:<br>Sampling Details:<br>Sampler:              |                                 |                       | ethod: <u>Sou</u>                  | mma-Te                          | Hon Tub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | my-YP                                                           | JCO #:                  |            |
| Tracer Gas Detection<br>Model:<br>Serial:<br>Sampling Details:                          |                                 |                       | ethod: <u>Sou</u><br>Time<br>Ended | Mma - Te<br>Summa<br>Canister # | Hon Tub<br>Vacuum a<br>Start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nt Vac                                                          | JCO #:<br>uum at<br>End | COC        |
| Tracer Gas Detection<br>Model:<br>Serial:<br>Sampling Details:<br>Sampler:              | 0 / T · B<br>Date               | Me                    | Time                               | Summa                           | Vacuum a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nt Vac                                                          | uum at<br>End           |            |
| Tracer Gas Detection<br>Model:<br>Serial:<br>Sampling Details:<br>Sampler:<br>Sample ID | 0 / T · B<br>Date               | Me<br>Time<br>Started | Time<br>Ended                      | Summa<br>Canister #             | Vacuum a<br>Start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nt Vac                                                          | uum at<br>End           | COC        |

F:\STANDARD\JCO Forms\SoilGasWell2.pub

۰L

| Soil Gas Well Construction                                                                                                 |                                                  |                        | 100 State S                    | on Company, J<br>Street, Suite 600<br>-, VT 05602<br>- 229-4600 |             |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------|--------------------------------|-----------------------------------------------------------------|-------------|
| Site Location: Northeast Washington,                                                                                       | DC                                               | ,                      | 101. (802)                     | 229-4000                                                        |             |
| Well ID: KPS.JLU.SV-08 Field I                                                                                             | Personnel: TR                                    | 0/5.13                 |                                | Recorded                                                        | by: J-B     |
| Permit Number:<br>Drilling Method: Man & Arges                                                                             | Installation Date:                               |                        |                                |                                                                 | ing:        |
| Ambient PID Reading:                                                                                                       |                                                  |                        |                                | oss During Drill                                                | ing:        |
|                                                                                                                            |                                                  |                        |                                |                                                                 |             |
| Well Construction Details: (all measurem                                                                                   | nents relative to groun                          | - surface)             | - Protective (                 | Casing NA                                                       |             |
|                                                                                                                            |                                                  |                        |                                |                                                                 |             |
| Riser Pipe Material: Tet for To                                                                                            | bing                                             |                        |                                |                                                                 |             |
| Sandpack Material: J-Her Sa                                                                                                | and l                                            |                        |                                | der Slab:                                                       |             |
| Top: 25" Bottom: 34"                                                                                                       |                                                  |                        | Road Box S                     |                                                                 |             |
|                                                                                                                            |                                                  |                        |                                |                                                                 | Gran. Befor |
| Screen         Material:         5.5.           Top:         28"         Bottom:         34"                               |                                                  |                        | Toni / G                       | al Material:                                                    | 25"         |
| Length: $6^{\circ}$ Diameter: $7^{\circ}$                                                                                  | -                                                |                        | \                              |                                                                 |             |
|                                                                                                                            | - 1                                              |                        |                                |                                                                 |             |
| Notes: 0.8 73 1501<br>10-30" tan ca<br>- 34" Sandy                                                                         | asse sand<br>reddish cla                         | м                      | ottles                         |                                                                 |             |
|                                                                                                                            |                                                  |                        |                                |                                                                 |             |
| Integrity Testing:                                                                                                         |                                                  | Time                   | Sampling<br>Rate               | Conc                                                            | entration   |
| Date Completed: Injection P                                                                                                | ressure:                                         |                        |                                |                                                                 |             |
|                                                                                                                            |                                                  |                        |                                |                                                                 |             |
| Tracer Type: Tracer Gra                                                                                                    | ade:                                             |                        | +                              |                                                                 |             |
|                                                                                                                            | ade:                                             |                        |                                |                                                                 |             |
| Tracer Type: Tracer Gra                                                                                                    | ade:                                             |                        |                                |                                                                 |             |
| Tracer Type: Tracer Gra Tracer Gas Detection Meter:                                                                        | ade:                                             |                        |                                |                                                                 |             |
| Tracer Type: Tracer Gra Tracer Gas Detection Meter: Model: Serial:                                                         | ade:                                             |                        |                                |                                                                 |             |
| Tracer Type: Tracer Gra Tracer Gas Detection Meter: Model: Serial: Sampling Details:                                       |                                                  | ma - Tef               | len Tubin,                     | y,-V <sup>P</sup> JCO                                           | #:          |
| Tracer Type: Tracer Gra Tracer Gas Detection Meter: Model: Serial: Sampling Details:                                       | Method: <u>Scm</u><br>ne Time                    | Summa Va               | lon Tubing<br>cuum at<br>Start | Vacuum at<br>End                                                | #:          |
| Tracer Type: Tracer Gra Tracer Gas Detection Meter: Model: Serial: Sampling Details: Sampler: TRO/ JIS Sample ID Date Tim  | Method: <u>Sem</u><br>ne Time<br>Lended C        | Summa Va<br>'anister # | cuum at                        | Vacuum at                                                       |             |
| Tracer Type: Tracer Gra Tracer Gas Detection Meter: Model: Serial: Sampling Details: Sampler: J13 Sample ID Date Tim Start | Method: <u>Sem</u><br>ne Time<br>Lended C        | Summa Va<br>'anister # | cuum at<br>Start               | Vacuum at<br>End                                                | COC         |
| Tracer Type:        Tracer Gra         Tracer Gas Detection Meter:       Model:                                            | Method: Scon<br>ne Time<br>Ended C<br>14 12:35 O | Summa Va<br>Sanister # | cuum at<br>Start               | Vacuum at<br>End                                                | COC         |
| Tracer Type: Tracer Gra Tracer Gas Detection Meter: Model: Serial: Sampling Details: Sampler: J13 Sample ID Date Tim Start | Method: Scon<br>ne Time<br>Ended C<br>14 12:35 O | Summa Va<br>Sanister # | cuum at<br>Start               | Vacuum at<br>End                                                | COC         |

F:\STANDARD\JCO Forms\SoilGasWell2.pub

| Soil Gas Well Construction<br>Project Name: <u>kenilworth</u> Project Number: <u>3-0700-11</u> (C<br>Site Location: Northest W | irle Londfill                    |                                                        |                        |                                    |                                              | c. pg. 1/3               | 1             |
|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------|------------------------|------------------------------------|----------------------------------------------|--------------------------|---------------|
| Well ID: KPS-560 -54-1015Fiel                                                                                                  |                                  | 20                                                     |                        |                                    | Recorded by                                  | TRO                      |               |
| Permit Number:                                                                                                                 | Installation Date:               |                                                        |                        |                                    |                                              |                          |               |
| Drilling Method: Hond Auger                                                                                                    |                                  |                                                        |                        |                                    |                                              |                          |               |
| Ambient PID Reading: 0.0 Ppm                                                                                                   |                                  |                                                        |                        |                                    |                                              |                          |               |
| Well Construction Details: (all measu                                                                                          |                                  |                                                        |                        | <b>Protective C</b> a<br>Material: | nsing<br><u>N</u> 14                         |                          |               |
| Riser Pipe Material: Teflon                                                                                                    |                                  |                                                        |                        |                                    | is:                                          |                          |               |
| Sandpack Material: #/ F:14en                                                                                                   |                                  |                                                        |                        |                                    | er Slab:                                     |                          |               |
| Top: 1.1 Byc Bottom: 1.9 B                                                                                                     | <u>ys</u>                        |                                                        |                        |                                    | ıl:                                          |                          |               |
| Screen Material: SS Sere                                                                                                       |                                  |                                                        |                        |                                    | Material: 4                                  | - ·                      |               |
| Top: <u>1.3 Bes</u> Bottom: <u>1.8 1</u>                                                                                       | 395                              |                                                        | $\setminus$            |                                    | <u>s s</u> _Bottom:                          | •                        |               |
| Length: <u>0.5</u> Diameter: <u>5/9</u>                                                                                        |                                  |                                                        |                        | -                                  | eal Material:<br>Bottom:                     |                          |               |
| Notes: Soils: 0.0.4' Br<br>f5+gravel Brickf,                                                                                   | moist stilly fs<br>ragments (fi  | ond<br>11).                                            | (Top So; 1)            | . 0-4-1.                           | 9° Br-0                                      | range Si                 | <u>: //</u> y |
| Integrity Testing:                                                                                                             |                                  |                                                        | Time                   | Sampling                           | , Conce                                      | ntration                 |               |
| Date Completed: Injection<br>Tracer Type: Tracer                                                                               | on Pressure:                     |                                                        |                        |                                    | in CH4 CO                                    | 2 02                     | Belaner       |
| Tracer Type: Tracer                                                                                                            | Grade:                           |                                                        | 2:47                   | 500                                |                                              | 9 15.5                   | 79.5          |
| Tracer Gas Detection Meter:                                                                                                    |                                  |                                                        | 2:49                   |                                    |                                              | 0 15.3                   |               |
| Model:                                                                                                                         | ZT                               |                                                        | 12:52                  | ¥                                  | 0.0 4.                                       |                          | 79.6          |
| Serial:                                                                                                                        | PI                               |                                                        | 12:42                  | 500                                | 0.1 Pr                                       |                          | napc          |
| Sampling Details:                                                                                                              | ben zove                         |                                                        |                        |                                    | 0.0 pp                                       | n. 21.0                  | 78.9          |
| Sampler: <u>TRo</u>                                                                                                            | Method: Suh                      | nma -                                                  | Methane                | Sampling                           | JCO #                                        | : 3-0700-4               |               |
|                                                                                                                                | Time Time<br>started Ended       | Sum<br>Canist                                          |                        | cuum at<br>Start                   | Vacuum at<br>End                             | COC                      | Reg<br>#      |
| 17PS-JCO-SV-1015 5/21/09 12                                                                                                    | :53 13:27                        | 107                                                    | 18 2                   | .8                                 | 1                                            | 7047                     | 285           |
|                                                                                                                                | (29 min)                         |                                                        |                        |                                    | 1                                            |                          |               |
|                                                                                                                                |                                  |                                                        |                        |                                    |                                              |                          |               |
| Notes: Borometric Press                                                                                                        | ure 30,53"                       | Ha                                                     |                        |                                    |                                              |                          |               |
|                                                                                                                                | 10,1 1 ± 10, 1 1 1 1 101 101 101 |                                                        |                        |                                    | معمد بر بری ورد می می می می                  | an a to a part           |               |
| )                                                                                                                              | an in Granness and an over s     | 1967 - 196 - 20 J. | manow w and they a sta | i genera - su statemer sanca       | و برور د برور د برور د                       | مرور ورور وحماره والمرور | na y spec of  |
|                                                                                                                                |                                  | a na ga para                                           | ~                      | unar e subri e po                  | يستعرد فاست المالي المراجع والمراجع والمراجع |                          | state to      |
| F: STANDARD/JCO Forms SoilGasV                                                                                                 | Vell2.pub                        |                                                        |                        |                                    |                                              |                          |               |

and the state

ta (

|              | Soil Gas Well Construction Log<br>Project Name: Kenilworth Park Londfill<br>Project Number: 3-0700-11 (126)<br>Site Location: North east Washington DC                                                                                                                                       | <b>The Johnson Company, Inc.</b><br>100 State Street, Suite 600<br>Montpelier, VT 05602<br>Tel. (802) 229-4600 | pg. 1/1                  |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------|
|              | Well ID: HPS - Jco - SV - 102 Field Personnel: TRO                                                                                                                                                                                                                                           | Recorded by:                                                                                                   | TRO                      |
|              | Permit Number: Installation Date: $3/2 \circ 10$ 9                                                                                                                                                                                                                                           | Driller: JCO                                                                                                   |                          |
|              | Drilling Method: Hand Auger Drilling Fluid:                                                                                                                                                                                                                                                  |                                                                                                                | :                        |
|              | Ambient PID Reading: 0.0 PPM Borehole PID Reading: 0.                                                                                                                                                                                                                                        |                                                                                                                |                          |
|              | Well Construction Details: (all measurements relative to ground surface)                                                                                                                                                                                                                     |                                                                                                                |                          |
|              | Riser Pipe Material: Teflon Tubing<br>Sandpack Material: #/ F://er Pack<br>Top: 0.8'395 Bottom: 1.553895<br>Screen Material: SS screen<br>Top: 1.0B Bottom: 1.5' Bys<br>Length: 0.5' Diameter: $5/8''$<br>Notes: So://s: 0-0.4' Br mo:st Silty fs, L:t<br>s://ty $\neq$ L:t. fs $\neq$ gr v. | Protective Casing         Material:       NP         Slab Thickness:                                           | renular Bent.<br>0.8'Bgs |
| p of this as | silty + lif. fs + grv.                                                                                                                                                                                                                                                                       |                                                                                                                |                          |
|              | Integrity Testing:                                                                                                                                                                                                                                                                           | ne Sampling Concen<br>Ratess//m/                                                                               | tration<br>Belonce       |
|              | Date Completed:  Injection Pressure:    Tracer Type:  Tracer Grade:                                                                                                                                                                                                                          |                                                                                                                | 20.3 78.9                |
|              | 13:0                                                                                                                                                                                                                                                                                         |                                                                                                                | 20.5 78.8                |
|              | Tracer Gas Detection Meter:                                                                                                                                                                                                                                                                  |                                                                                                                |                          |
|              | Model: PID 12:                                                                                                                                                                                                                                                                               |                                                                                                                |                          |
|              | Serial:                                                                                                                                                                                                                                                                                      | 06 V 0,0 PPL                                                                                                   | <u>ุ</u>                 |
|              | Sampling Details: Gen Bhgrad.                                                                                                                                                                                                                                                                |                                                                                                                |                          |
|              | Sampler: Nethod: _ Summa Cauls                                                                                                                                                                                                                                                               | Ver - Methane Sompting ICO #:                                                                                  | 3.0700.11                |
| ~            | Sample ID Date Time Time Summa<br>Started Ended Canister #                                                                                                                                                                                                                                   | Vacuum at<br>Start End                                                                                         | COC Rey                  |
|              | 01/PS-500-5V-1025 5/21/09 13:20 13:36 0178                                                                                                                                                                                                                                                   | 31-                                                                                                            | H H                      |
| 3107         | HPS-300-5V-102 DUP 13:20 13:36 0107                                                                                                                                                                                                                                                          | - 29 1                                                                                                         |                          |
|              | 11P5.Jco. 5V-1025 3/21/09 13:47 14:10, 1072                                                                                                                                                                                                                                                  | 31 3                                                                                                           | 7047 40                  |
|              | Notes: Hose dissconneted from Som ma Can<br>Sample Collection, Discard Sample<br>Canister for Sample Collection, So<br>Borometric Pressure: 30.54" Hg                                                                                                                                        | <u>ister # 0118</u> during<br>Canisters. Set up<br>mple Collected over                                         |                          |

| Soil Gas Well (<br>Project Name: <u>He</u><br>Project Number: <u>3</u><br>Site Location: <u>Ma</u> | nilworth F<br>· v IOD - 11<br>rtheast W                                                        | arte Lond<br>(126)<br>leshington 1 | 20            |      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 State<br>Montpelie                                       | son Company, In<br>Street, Suite 600<br>r, VT 05602<br>) 229-4600 | c. pg. 1/1               |                 |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------|---------------|------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------|--------------------------|-----------------|
| Well ID: KPS - JC                                                                                  | 0-5V -103                                                                                      | P<br>Field Person                  | nel:          | TRO  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | Recorded by                                                       | : TRO                    |                 |
| Permit Number:<br>Drilling Method:<br>Ambient PID Reading                                          | oprobe                                                                                         | Drill                              | ing Fluid:    |      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fluid L                                                      |                                                                   |                          |                 |
| Sandpack Mat<br>Top: <b>2.5</b> Bott                                                               | erial: <u>Te<b>f/</b>00</u><br>erial: <u>#/ Fin</u><br>tom: <u>4.0</u><br>erial: <u>\$5</u> 50 | Tubing )<br>Her Sonk               |               |      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Material U<br>Road Box 3<br>Annular S<br>Top:/,<br>Secondary | Casing           \frac{1}{2}         Fe flow To           ness:   |                          | tenit.          |
| Integrity Testing:                                                                                 |                                                                                                |                                    |               |      | <br>Tin        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Samplin                                                      |                                                                   | ntration                 |                 |
| Date Completed:<br>Tracer Type:                                                                    | Inje                                                                                           | ction Pressu                       | re:           |      | Cere           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rate<br>500                                                  | na Yangin                                                         |                          |                 |
| Tracer Type:                                                                                       | Tra                                                                                            | cer Grade:                         |               | PID  | 9:p2           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,00                                                          | 0.0 pp w                                                          | 1                        |                 |
| Tracer Gas Detectio                                                                                | n Meter:                                                                                       |                                    | Gem .2        | 000  | 9:15<br>9:18   | - Contraction of the local division of the l |                                                              | C#4 C                                                             | 02 02                    | Balance         |
| Model:                                                                                             |                                                                                                |                                    |               | -    | 9:20           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500                                                          |                                                                   | 1.496 6.790              | 85.82,<br>25.86 |
| Serial:                                                                                            |                                                                                                | . cóm                              |               | -    | 9:23           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | 0.07                                                              | 15%. 662                 | 85.78           |
| Sampling Details:                                                                                  |                                                                                                | _                                  | Bkgr          | ornd |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | 0.012                                                             | 1.57, 6.6%<br>0.9% 21.79 | 78.12           |
| Sampler: TRo                                                                                       |                                                                                                | Me                                 |               |      | <u>Canis</u>   | ter -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mothome.                                                     | Sampling JCO #                                                    |                          |                 |
| Sample ID                                                                                          | Date                                                                                           | Time<br>Started                    | Time<br>Ended |      | nma<br>ister # |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cuum at<br>Start                                             | Vacuum at<br>End                                                  | COC                      | Rey #           |
| KPS-JCO-SV-103                                                                                     | 13/21/09                                                                                       | 9:47                               | 10:14         | 011  | 3              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 8'                                                         | 14                                                                | 7047                     | 0288            |
| MPS-J10-SV-DUP                                                                                     | 3/21/09                                                                                        | 9:47                               | 10:14         | 012  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>9''</u>                                                   | 2"                                                                | 7047                     | 2863            |
| Notes: Barome<br>Weather: Cla                                                                      |                                                                                                |                                    |               |      |                | <u>To fo</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (Samp)                                                       | e Collection                                                      | n Time 27                | tminute         |

F: STANDARD JCO Forms/SoilGasWell2.pub

| Soil Gas Well Construction Log<br>Project Name: <u>Hen il worth Park Land fill</u><br>Project Number: <u>3.0700-11</u> (20)<br>Site Location: <u>North east Washington</u> DC                                                                                                                                   |                                                                         | The Johnson Cor<br>100 State Street, S<br>Montpelier, VT<br>Tel. (802) 229-46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | uite 600<br>05602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pg. 1/1                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Well ID: KPS-JW - SV-104P Field Personnel: TRO                                                                                                                                                                                                                                                                  | )                                                                       | Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | corded by: フル                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                                                                                                            |
| Permit Number:       Installation Date:       3/         Drilling Method:       Geopumbe       Drilling Fluid:         Ambient PID Reading:       0.0 ppm       Borehole PID Reading:                                                                                                                           |                                                                         | Fluid Loss Du                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ing Drilling:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                               |
| Well Construction Details: (all measurements relative to ground soRiser PipeMaterial: $Te flow Tubing$ SandpackMaterial: $H/F://for Same$ Top: $2.5'$ Bottom: $3.3'$ ScreenMaterial: $\leq 5 \mod 6$ Top: $2.7'$ Bottom: $3.2'$ Length: $0.5'$ Diameter: $5/8''$                                                |                                                                         | Protective Casing         Material:         Slab Thickness:         Material Under Sla         Road Box Seal:         Annular Seal         Top:         1.2         Secondary Seal         Top:         1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | b:<br>Aaterial: <u>Grenul</u><br>Sottom: 2.5<br>Aaterial:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ar Bentonite                                                                                                  |
|                                                                                                                                                                                                                                                                                                                 |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                               |
| Integrity Testing:                                                                                                                                                                                                                                                                                              | Time                                                                    | Sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ~ ·                                                                                                           |
| Integrity Testing:         Date Completed:                                                                                                                                                                                                                                                                      |                                                                         | Rate #1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hy COZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Oz Balance                                                                                                    |
| Integrity Testing:         Date Completed:       Injection Pressure:         Tracer Type:       Tracer Grade:                                                                                                                                                                                                   | 10:25                                                                   | Rate #1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 144 <u>CO2</u><br>1.0 <u>3.9</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Oz Balance                                                                                                    |
| Date Completed:   Injection Pressure:     Tracer Type:   Tracer Grade:   Tracer Gas Detection Meter:                                                                                                                                                                                                            | 10: 25<br>10: 27                                                        | Rate #// 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hy CO2<br>1.0 3.9<br>1.0 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0, Balance<br>15.9 Bo.Z<br>15.7 Bo.4                                                                          |
| Date Completed:       Injection Pressure:         Tracer Type:       Tracer Grade:         Tracer Gas Detection Meter:       Model:         PID                                                                                                                                                                 | 10:25                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{144}{100} \frac{CO_2}{3.9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 02 Balance<br>15.9 Bo.Z<br>15.7 Bo.4                                                                          |
| Date Completed:       Injection Pressure:         Tracer Type:       Tracer Grade:         Tracer Gas Detection Meter:       Model:                                                                                                                                                                             | 10:25<br>10:27<br>10:30<br>10:21                                        | Rate #1/(<br>500 0<br>10<br>500 0<br>500 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hy CO2<br>1.0 3.9<br>1.0 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0, Balance<br>15.9 Bo.Z<br>15.7 Bo.4                                                                          |
| Date Completed:       Injection Pressure:         Tracer Type:       Tracer Grade:         Tracer Gas Detection Meter:       Nodel:         Serial:       PID         Sampling Details:       Nethod:         Sampler:       TPO                                                                                | 10: 25<br>10: 27<br>10: 30<br>10: 21<br>10: 24<br>Can ister -           | Rate #1/200<br>500 C<br>V C<br>Sool C<br>Metamesongs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 144 COZ<br>1.0 3.9<br>1.0 3.9<br>1.0 3.9<br>1.0 ppm<br>1.0 ppm<br>1.0 ppm<br>1.0 ppm<br>1.0 20<br>1.0 20<br>1.0 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 02 Balance<br>15.9 Bo. 2<br>13.7 Bo. 4<br>5.7 Bo. 4<br>5.7 Bo. 4<br>5.7 Bo. 4                                 |
| Date Completed:       Injection Pressure:         Tracer Type:       Tracer Grade:         Tracer Gas Detection Meter:       Model:         Model:       PID         Serial:       PID         Sampling Details:       Sampler:         Sample ID       Date       Time         Started       Ended       Can   | 10: 25<br>10: 27<br>10: 30<br>10: 21<br>10: 21<br>10: 24<br>Can ister - | Rate $\frac{m}{m}$ | 144 COZ<br>1.0 3.9<br>1.0 3.9<br>1.0 3.9<br>1.0 ppm<br>1.0 ppm<br>1.0 ppm<br>1.0 ppm<br>1.0 20<br>1.0 20<br>1.0 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0, Balance<br>15.9 Bo. 2<br>15.7 Bo. 4<br>5.7 Bo. 4<br>5.7 Bo. 4                                              |
| Date Completed:       Injection Pressure:         Tracer Type:       Tracer Grade:         Tracer Gas Detection Meter:       Model:         Model:       PID         Serial:       PID         Sampling Details:       Sampler:         Sample ID       Date       Time         Sample ID       Date       Time | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                  | Rate #1/200<br>500 C<br>VI C<br>Soo C<br>MetameSomple<br>Cuum at Vac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{144}{0.0} \frac{CO_2}{3.9}$ $\frac{1}{0.0} \frac{3.9}{3.9}$ $\frac{1}{0.0} \frac{3.9}{2.9}$ $\frac{1}{0.0} \frac{1}{0.0} \frac{3.9}{0.0}$ $\frac{1}{0.0} \frac{1}{0.0} \frac{1}{0.0} \frac{1}{0.0}$ $\frac{1}{0.0} \frac{1}{0.0} \frac{1}{0.0} \frac{1}{0.0} \frac{1}{0.0}$ $\frac{1}{0.0} \frac{1}{0.0} \frac$ | 0, <u>Balance</u><br>15.9 Bo. 2<br>5.7 Bo. 4<br>5.7 Bo. 4<br>5.7 Bo. 4<br>5.7 Bo. 4<br>5.7 Bo. 4<br>5.7 Bo. 4 |

F: STANDARD JCO Forms-SoilGasWell2.pub

| Project Name: <u>Hen:/worth Por</u><br>Project Number: <u>3-0700-11</u> (<br>Site Location: <i>Northeest Wash</i>                                                                                                                                                 | (126)                                                       |                                                                                                | 100 State S                                                                                                                                                                                                                                                                                                     | son Company, In<br>Street, Suite 600<br>r, VT 05602<br>9 229-4600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | с. р <b>д. 1</b> /                                                                                                                                                                                                                                                                                                              | 1                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Well ID: KPS-JCO-SV-105                                                                                                                                                                                                                                           |                                                             | TRO                                                                                            |                                                                                                                                                                                                                                                                                                                 | Recorded by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | : TRe                                                                                                                                                                                                                                                                                                                           |                                            |
| Permit Number:                                                                                                                                                                                                                                                    |                                                             | *                                                                                              |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                 |                                            |
| Drilling Method: Geoprobe                                                                                                                                                                                                                                         |                                                             |                                                                                                |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                 |                                            |
| Ambient PID Reading: 0.0 ppm                                                                                                                                                                                                                                      |                                                             |                                                                                                |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                 |                                            |
| Well Construction Details: (all meaRiser PipeMaterial: Te flom                                                                                                                                                                                                    | Tubing                                                      |                                                                                                | Slab Thick                                                                                                                                                                                                                                                                                                      | ///A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                 | _                                          |
| Sandpack Material: #1 Filk                                                                                                                                                                                                                                        | er Sand                                                     |                                                                                                | \                                                                                                                                                                                                                                                                                                               | nder Slab:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                 |                                            |
| Top: <u>2.8</u> Bottom: <u>4</u> .9                                                                                                                                                                                                                               |                                                             |                                                                                                | $\mathbf{X}$                                                                                                                                                                                                                                                                                                    | Seal:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                 |                                            |
| Screen Material: 58 Ma                                                                                                                                                                                                                                            | esh                                                         |                                                                                                | Annular S                                                                                                                                                                                                                                                                                                       | eal Material: <u>(</u><br><u>)</u> Bottom:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Grandler B                                                                                                                                                                                                                                                                                                                      | entonite<br>tootel                         |
| Top: 3.5 Bottom: 4.0<br>Length: $0.5'$ Diameter: $5/2$                                                                                                                                                                                                            | <u>,</u>                                                    |                                                                                                | $\mathbf{X}$                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                 |                                            |
| Length: $0.5$ Diameter: $3/2$                                                                                                                                                                                                                                     | <u>&gt;</u>                                                 |                                                                                                |                                                                                                                                                                                                                                                                                                                 | Seal Material:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |                                            |
|                                                                                                                                                                                                                                                                   | L                                                           |                                                                                                | Top:                                                                                                                                                                                                                                                                                                            | Bottom:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                 |                                            |
| Notes:                                                                                                                                                                                                                                                            |                                                             |                                                                                                |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                 |                                            |
|                                                                                                                                                                                                                                                                   |                                                             |                                                                                                |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                 |                                            |
|                                                                                                                                                                                                                                                                   |                                                             |                                                                                                |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                 |                                            |
| Integrity Testing:                                                                                                                                                                                                                                                |                                                             | <br>                                                                                           | e Samplin                                                                                                                                                                                                                                                                                                       | g Conce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ntration                                                                                                                                                                                                                                                                                                                        |                                            |
| Integrity Testing:<br>Date Completed: Injec                                                                                                                                                                                                                       | ction Pressure:                                             | Tim                                                                                            | e Samplin<br>Rate                                                                                                                                                                                                                                                                                               | Manin CHy CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ntration                                                                                                                                                                                                                                                                                                                        |                                            |
| Date Completed: Injec                                                                                                                                                                                                                                             | ction Pressure:<br>cer Grade: 200                           | 0 10:4                                                                                         | Rate/                                                                                                                                                                                                                                                                                                           | Чтар <u>СНщ Сс</u><br>0.0_1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>B 18.2</u>                                                                                                                                                                                                                                                                                                                   | Balance<br>79.970                          |
| Date Completed: Injec<br>Tracer Type: Trace                                                                                                                                                                                                                       | ction Pressure:<br>cer Grade: 200                           | 0<br>10:4<br>10:4                                                                              | Ratel<br>5 600<br>7                                                                                                                                                                                                                                                                                             | еврий <u>СНЩ Со</u><br><u>0.0  .</u><br>0.0  .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>2 07</u><br><u>B 18.2</u><br><u>B 18.2</u>                                                                                                                                                                                                                                                                                   | 79.9%                                      |
| Date Completed:    Injec      Tracer Type:    Trace      Tracer Gas Detection Meter:                                                                                                                                                                              | ction Pressure:                                             | 0 10:4                                                                                         | Ratel<br>5 600<br>7                                                                                                                                                                                                                                                                                             | еврий <u>СНЩ Со</u><br><u>0.0  .</u><br>0.0  .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>B 18.2</u>                                                                                                                                                                                                                                                                                                                   | 79.970                                     |
| Date Completed: Injec<br>Tracer Type: Trace<br>Tracer Gas Detection Meter:<br>Model:                                                                                                                                                                              | ction Pressure:<br>cer Grade:<br>ZUD                        | 0 10:4<br>10:4<br>10:5<br>10:5                                                                 | Rate/<br>5 600<br>7<br>0 V<br>5 600<br>7<br>0 V                                                                                                                                                                                                                                                                 | еврий <u>СНЩ Со</u><br><u>0.0  .</u><br>0.0  .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 0 <u>2</u><br>B 1B.2<br>B 1E.2<br>7 1E.3                                                                                                                                                                                                                                                                                      | 79.9%                                      |
| Date Completed: Injec<br>Tracer Type: Trac<br>Tracer Gas Detection Meter:<br>Model:<br>Serial:                                                                                                                                                                    |                                                             | 0 10:4<br>10:4<br>10:5<br>10:5<br>10:4<br>10:4                                                 | Rate/<br>5 600<br>7<br>0 V<br>5 600<br>7<br>0 V                                                                                                                                                                                                                                                                 | Ч/т.:.) <u>СНЧ С</u> С<br>0.0 1.<br>0.0 1.<br>0.0 1.<br>0.0 1.<br>0.0 рр                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 02<br>B 18.2<br>B 18.2<br>7 18.3<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                             | 79.970<br>79.970<br>79.970                 |
| Date Completed: Injec<br>Tracer Type: Trace<br>Tracer Gas Detection Meter:<br>Model:<br>Serial:<br>Sampling Details:                                                                                                                                              | - PI<br>- PI<br>- Bck ;                                     | D 10:4<br>10:4<br>10:5<br>10:5<br>10:4<br>10:4<br>10:4                                         | $\begin{array}{c c} Rate/\\ \hline S & Svv \\ \hline 7 & 1 \\ \hline 0 & V \\ \hline 0 & Svv \\ \hline 1 & V \\ \hline 1 & V \\ \hline \end{array}$                                                                                                                                                             | 0.0 1.<br>0.0 1.<br>0.0 1.<br>0.0 1.<br>0.0 1.<br>0.0 pp<br>0.0 pp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $   \begin{array}{cccc}             2 & O_2 \\             B & IB.2 \\             B & IB.2 \\             B & IB.2 \\             7 & IB.3 \\             \hline             7 & IB.3 \\             \hline             7 \\           $                                                                                       | 79.9%                                      |
| Date Completed: Injec<br>Tracer Type: Trac<br>Tracer Gas Detection Meter:<br>Model:<br>Serial:                                                                                                                                                                    | - PI<br>- PI<br>- Bck ;                                     | D 10:4<br>10:4<br>10:5<br>10:5<br>10:4<br>10:4<br>10:4                                         | Rate/<br>5 600<br>7<br>0 V<br>5 600<br>7<br>0 V                                                                                                                                                                                                                                                                 | 0.0 1.<br>0.0 1.<br>0.0 1.<br>0.0 1.<br>0.0 1.<br>0.0 pp<br>0.0 pp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $   \begin{array}{cccc}             2 & O_2 \\             B & IB.2 \\             B & IB.2 \\             B & IB.2 \\             7 & IB.3 \\             \hline             7 & IB.3 \\             \hline             7 \\           $                                                                                       | 79.970<br>79.920<br>79.920                 |
| Date Completed: Injec<br>Tracer Type: Trace<br>Tracer Gas Detection Meter:<br>Model:<br>Serial:<br>Sampling Details:                                                                                                                                              | - PI<br>- PI<br>- Bck ;                                     | D 10:4<br>10:4<br>10:5<br>10:5<br>10:4<br>10:4<br>10:4                                         | $\begin{array}{c c} Rate/\\ \hline S & Svv \\ \hline 7 & 1 \\ \hline 0 & V \\ \hline 0 & Svv \\ \hline 1 & V \\ \hline 1 & V \\ \hline \end{array}$                                                                                                                                                             | 0.0 1.<br>0.0 1.<br>0.0 1.<br>0.0 1.<br>0.0 1.<br>0.0 pp<br>0.0 pp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $   \begin{array}{cccc}             2 & O_2 \\             B & IB.2 \\             B & IB.2 \\             B & IB.2 \\             7 & IB.3 \\             \hline             7 & IB.3 \\             \hline             7 \\           $                                                                                       | 79.970<br>79.920<br>79.920                 |
| Date Completed:    Inject      Tracer Type:    Trace      Tracer Gas Detection Meter:    Model:      Model:       Serial:       Sampling Details:       Sampler:                                                                                                  | FI<br>FI<br>Belt<br>Method: Sur<br>Time<br>Started<br>Ended | 5 10:4<br>10:4<br>10:4<br>10:5<br>10:4<br>10:4<br>10:4<br>10:4<br>10:4<br>Summa<br>Canister #  | Rate<br>5 Sou<br>7<br>0<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                     | "//) <u>СНЩ</u> СС<br>0.0  .<br>0.0  .<br>0.0  .<br>0.0 [.<br>0.0 PF<br>0.0 PF<br>0.0 PF<br>0.0 U<br>pf<br>0.0 ft<br>0.0 ft<br>0 | 2 02<br>B 1B.2<br>B 1B.2<br>7 1B.3<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>3<br>2<br>0<br>7<br>1<br>2<br>0<br>2<br>0<br>9<br>1<br>2<br>0<br>1<br>0<br>2<br>0<br>9<br>1<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>2<br>1<br>2<br>2<br>2<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 79.970<br>79.920<br>79.920<br>78.9         |
| Date Completed:    Inject      Tracer Type:    Trace      Tracer Gas Detection Meter:    Model:      Model:       Serial:       Sampling Details:       Sampler:       Sample ID    Date                                                                          | PI<br>Beft f<br>Method: <u>Sur</u>                          | 5 10:4<br>10:4<br>10:4<br>10:5<br>10:4<br>10:4<br>10:4<br>10:4<br>10:4<br>Summa<br>Canister #  | Rate<br>S Sou<br>7<br>U<br>V<br>V<br>Sou<br>Sou<br>Co<br>Sou<br>Co<br>Sou<br>Co<br>Sou<br>Co<br>Sou<br>Co<br>Sou<br>Co<br>Sou<br>Co<br>Sou<br>Co<br>Sou<br>Co<br>Sou<br>Co<br>Sou<br>Co<br>Sou<br>Co<br>Sou<br>Co<br>Sou<br>Co<br>Sou<br>Co<br>Sou<br>Co<br>Sou<br>Sou<br>Sou<br>Sou<br>Sou<br>Sou<br>Sou<br>So | "/m.:.) <u>CH4</u> <u>Co</u><br>0.0  .<br>0.0  .<br>0.0  .<br>0.0  .<br>0.0 PF<br>0.0 PF<br>0.0 U<br>ampliby JCO ≠<br>Vacuum at<br>End                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 02<br>B 1B.2<br>B 1B.2<br>F 1B.3<br>Dm<br>Dm<br>Dm<br>Dm<br>20.9<br>4: 3.0700-11<br>COC                                                                                                                                                                                                                                       | 79.970<br>79.920<br>79.920<br>78.9<br>78.9 |
| Date Completed:    Inject      Tracer Type:    Trace      Tracer Gas Detection Meter:    Model:      Model:       Serial:       Sampling Details:       Sampler:                                                                                                  | FI<br>FI<br>Belt<br>Method: Sur<br>Time<br>Started<br>Ended | 5 10:4<br>10:4<br>10:4<br>10:5<br>10:4<br>10:4<br>10:4<br>10:4<br>10:4<br>Summa<br>Canister #  | Rate<br>S Sou<br>7<br>U<br>V<br>V<br>Sou<br>Sou<br>Co<br>Sou<br>Co<br>Sou<br>Co<br>Sou<br>Co<br>Sou<br>Co<br>Sou<br>Co<br>Sou<br>Co<br>Sou<br>Co<br>Sou<br>Co<br>Sou<br>Co<br>Sou<br>Co<br>Sou<br>Co<br>Sou<br>Co<br>Sou<br>Co<br>Sou<br>Co<br>Sou<br>Co<br>Sou<br>Sou<br>Sou<br>Sou<br>Sou<br>Sou<br>Sou<br>So | "/m.:.) <u>CH4</u> <u>Co</u><br>0.0  .<br>0.0  .<br>0.0  .<br>0.0  .<br>0.0 PF<br>0.0 PF<br>0.0 U<br>ampliby JCO ≠<br>Vacuum at<br>End                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 02<br>B 1B.2<br>B 1B.2<br>F 1B.3<br>Dm<br>Dm<br>Dm<br>Dm<br>20.9<br>4: 3.0700-11<br>COC                                                                                                                                                                                                                                       | 79.970<br>79.920<br>79.920<br>78.9<br>78.9 |
| Date Completed:       Injec         Tracer Type:       Trac         Tracer Gas Detection Meter:       Model:         Model:       Serial:         Sampling Details:       Sampler:         Sampler: $TRO$ Sample ID       Date $KP5 - Tco - SV - 105 D$ $3/21/07$ | Time Time Started Ended                                     | 5 10:4<br>10:4<br>10:4<br>10:5<br>10:4<br>10:4<br>10:4<br>10:4<br>10:4<br>10:4<br>10:4<br>10:4 | Rate/ $S = 600$ $7 = - Methone 8$ $Vacuum at$ $Start$ $30$                                                                                                                                                                                                                                                      | "/m.:.) <u>CH4</u> <u>Co</u><br>0.0  .<br>0.0  .<br>0.0  .<br>0.0  .<br>0.0 PF<br>0.0 PF<br>0.0 U<br>ampliby JCO ≠<br>Vacuum at<br>End                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 02<br>B 1B.2<br>B 1B.2<br>F 1B.3<br>Dm<br>Dm<br>Dm<br>Dm<br>20.9<br>4: 3.0700-11<br>COC                                                                                                                                                                                                                                       | 79.970<br>79.920<br>79.920<br>78.9<br>78.9 |
| Date Completed:       Injec         Tracer Type:       Trac         Tracer Gas Detection Meter:       Model:         Model:       Serial:         Sampling Details:       Sampler:         Sampler: $TRO$ Sample ID       Date $KP5 - Tco - SV - 105 D$ $3/21/07$ | Time Time Started Ended                                     | 5 10:4<br>10:4<br>10:4<br>10:5<br>10:4<br>10:4<br>10:4<br>10:4<br>10:4<br>10:4<br>10:4<br>10:4 | Rate/ $S = 600$ $7 = - Methone 8$ $Vacuum at$ $Start$ $30$                                                                                                                                                                                                                                                      | $\frac{\psi/m.i}{CHy} CHy Co}{0.0  .}$ $0.0  .$ $0.0  .$ $0.0  .$ $0.0 pp$ $0.0 pp$ $0.0 pp$ $0.0 pp$ $0.0 thy$ $Vicuum at$ End $3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 02<br>B 1B.2<br>B 1B.2<br>F 1B.3<br>Dm<br>Dm<br>Dm<br>Dm<br>20.9<br>4: 3.0700-11<br>COC                                                                                                                                                                                                                                       | 79.970<br>79.920<br>79.920<br>78.9<br>78.9 |
| Date Completed:    Inject      Tracer Type:    Trace      Tracer Gas Detection Meter:    Model:      Model:       Serial:       Sampling Details:       Sampler:                                                                                                  | Time Time Started Ended                                     | 5 10:4<br>10:4<br>10:4<br>10:5<br>10:4<br>10:4<br>10:4<br>10:4<br>10:4<br>10:4<br>10:4<br>10:4 | Rate/ $S = 600$ $7 = - Methone 8$ $Vacuum at$ $Start$ $30$                                                                                                                                                                                                                                                      | "/m.:.) <u>CH4</u> <u>Co</u><br>0.0  .<br>0.0  .<br>0.0  .<br>0.0  .<br>0.0 PF<br>0.0 PF<br>0.0 U<br>ampliby JCO ≠<br>Vacuum at<br>End                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 02<br>B 1B.2<br>B 1B.2<br>F 1B.3<br>Dm<br>Dm<br>Dm<br>Dm<br>20.9<br>4: 3.0700-11<br>COC                                                                                                                                                                                                                                       | 79.970<br>79.920<br>79.920<br>78.9<br>78.9 |

F: STANDARD JCO Forms SoilGasWell2.pub

" Internet

| Soil Gas Well Const<br>Project Name: <u>Henilus</u><br>Project Number: 3.0700.<br>Site Location: Northeast | with Parte La                                                                           | nd f:11        |                     | 100 Stat<br>Montpel                                                                       | inson Company, In<br>e Street, Suite 600<br>lier, VT 05602<br>12) 229-4600 | c. pg. 1/                         | 1                     |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------|---------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------|-----------------------|
| Well ID: 10-5V-1                                                                                           | 06D Field Person                                                                        | nel:           | TRU                 |                                                                                           | Recorded by                                                                | : TRO                             |                       |
| Permit Number:<br>Drilling Method:<br>Ambient PID Reading:                                                 | <b>2</b> Drilli                                                                         | ing Fluid:     |                     | Fluid                                                                                     | er: <b>JCo / Ve</b><br>I Loss During Drillir                               | rom'es                            |                       |
| Well Construction Details:<br>Riser Pipe Material:                                                         | (all measurements r<br>Te flon Tubring<br>HI F: Her Sand<br>4.0 <sup>1</sup><br>SS Mesh | elative to gro |                     | Protective<br>Material:<br>Slab Thio<br>Material<br>Road Bo<br>Annular<br>Top:<br>Seconda | ve Casing<br>                                                              | éranular B<br>2.3'                | <sup>3</sup> enterite |
| Integrity Testing:                                                                                         |                                                                                         |                | <br>                | ie Samp                                                                                   | ling Conce                                                                 | entration                         |                       |
| Date Completed:                                                                                            | Injection Pressur                                                                       | re:GEM         | 7:5                 |                                                                                           | em1/ms CH4 C                                                               | 0 <u>2</u> 0 <u>2</u><br>1.0 18.8 | 19.27                 |
| Tracer Type:                                                                                               | Tracer Grade:                                                                           | 2              | 10:0                |                                                                                           |                                                                            | ·.U 18.7                          | 79.2                  |
| Tracer Gas Detection Mete                                                                                  | er:                                                                                     |                | 10:0                | 6                                                                                         | 0.0 2                                                                      | .0 18.7                           | 79.1                  |
| Model:                                                                                                     |                                                                                         | PI             | D 9:5               | 5 500                                                                                     | 0.0 pp                                                                     |                                   |                       |
| Serial:                                                                                                    |                                                                                         |                | 9:5                 | e 1                                                                                       | 6.0 PP                                                                     | m                                 |                       |
| Sampling Details:<br>Sampler: TPe                                                                          |                                                                                         | Bell Sel       |                     | stor - Meth                                                                               | ene Somphilipgi (CO                                                        |                                   | 78.6                  |
|                                                                                                            |                                                                                         |                |                     |                                                                                           |                                                                            |                                   |                       |
| Sample ID D                                                                                                | ate Time<br>Started                                                                     | Time<br>Ended  | Summa<br>Canister # | Vacuum at<br>Start                                                                        | Vacuum at<br>End                                                           | COC                               | Reg #                 |
| KPS-JCO-SV-106D 31                                                                                         | 10:09                                                                                   | 10:34          | 0139                | 30'                                                                                       | 2                                                                          | 7047                              |                       |
|                                                                                                            | ollection 2:                                                                            | · · /          |                     |                                                                                           |                                                                            |                                   |                       |

"Sugar

# **APPENDIX 3**

# INDOOR AIR PRE-SAMPLING SURVEY

# THE JOHNSON COMPANY, INC.

100 State Street, Suite 600 Montpelier, Vermont 05602 (802) 229-4600

SOP-JCO-063-002

Page 3 of 3

.

| Indoor Air Quality Building Surve         Sampler:       Momas Oshorne       Date:       10/16/2         Address:       The Sohnsen Component       100 16/2         Address:       Met Sohnsen Component       100 16/2         Contact Name:        Monthe State St | $100^{2}$ $100^{2}$ $100^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ $11^{2}$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Building Construction Characteristics:         What type of building is it? (Circle appropriate responses)         Single Family       Multi-Family         School       Con         Industrial       Kenilworth - Parkside         Ranch       2-Family         Raised Ranch       Duplex         Cape       Apartment House (# of units)                                                                                                                | mmercial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Building Construction Characteristics:         What type of building is it? (Circle appropriate responses)         Single Family       Multi-Family         School       Con         Industrial       Kenilworth. Parkside         Ranch       2-Family         Raised Ranch       Duplex         Cape       Apartment House (# of units)                                                                                                                 | mmercial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Building Construction Characteristics:         What type of building is it? (Circle appropriate responses)         Single Family       Multi-Family         School       Con         Industrial       Kenilworth - Parkside         Ranch       2-Family         Raised Ranch       Duplex         Cape       Apartment House (# of units)                                                                                                                | mmercial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Building Construction Characteristics:         What type of building is it? (Circle appropriate responses)         Single Family       Multi-Family         School       Con         Industrial       Kenilworth - Parkside         Ranch       2-Family         Raised Ranch       Duplex         Cape       Apartment House (# of units)                                                                                                                | mmercial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Building Construction Characteristics:         What type of building is it? (Circle appropriate responses)         Single Family       Multi-Family         Single Family       Multi-Family         Industrial       Kenilworth - Parkside         Ranch       2-Family         Raised Ranch       Duplex         Cape       Apartment House (# of units)                                                                                                | nmercial<br>2 Center                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| What type of building is it? (Circle appropriate responses)         Single Family       Multi-Family         School       Con         Industrial       Kenilworth - Parkside         Ranch       2-Family         Raised Ranch       Duplex         Cape       Apartment House (# of units)                                                                                                                                                               | nmercial<br>2 Cenfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| What type of building is it? (Circle appropriate responses)         Single Family       Multi-Family         School       Con         Industrial       Kenilworth - Parkside         Ranch       2-Family         Raised Ranch       Duplex         Cape       Apartment House (# of units)                                                                                                                                                               | nmercial<br>2 Center                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Single FamilyMulti-FamilySchoolConIndustrialKenilworth - ParksideRecreationRanch2-FamilyRaised RanchDuplexCapeApartment House (# of units)                                                                                                                                                                                                                                                                                                                | nmercial<br>2 Center                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Industrial Kenilworth - Parkside Recreation<br>Ranch 2-Family<br>Raised Ranch Duplex<br>Cape Apartment House (# of units)                                                                                                                                                                                                                                                                                                                                 | nmercial<br>2 Center                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Industrial Kenilworth - Parkside Recreation<br>Ranch 2-Family<br>Raised Ranch Duplex<br>Cape Apartment House (# of units)                                                                                                                                                                                                                                                                                                                                 | n Center                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Ranch2-FamilyRaised RanchDuplexCapeApartment House (# of units)                                                                                                                                                                                                                                                                                                                                                                                           | n Center                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Raised Ranch     Duplex       Cape     Apartment House (# of units)                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Cape Apartment House (# of units)                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Colonial Condominium (# of units )                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · 4 · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Split Level Other (specify)                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Mobile Home                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Number of occupied stories: / Year built?                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Has the building been weatherized with any of the following? (Circle                                                                                                                                                                                                                                                                                                                                                                                      | e all that apply)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Insulation Storm windows Energy-efficient windows                                                                                                                                                                                                                                                                                                                                                                                                         | Other (specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Attached garage? (Y/N) Vehicle(s) present?                                                                                                                                                                                                                                                                                                                                                                                                                | (Y/N) <u>N</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| What type of basement does the building have? (Circle all that apply)                                                                                                                                                                                                                                                                                                                                                                                     | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Full basement Crawlspace Slab-on-grade (Oth                                                                                                                                                                                                                                                                                                                                                                                                               | iers accord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| is an                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| what are the characteristics of the basement? (Circle all that apply)                                                                                                                                                                                                                                                                                                                                                                                     | in to Adame Wen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| What are the characteristics of the basement? (Circle all that apply)                                                                                                                                                                                                                                                                                                                                                                                     | VA to Arline Wein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Finished Basement Floor: Foundation                                                                                                                                                                                                                                                                                                                                                                                                                       | VA to Arline Wein<br>Walls: N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VA to Arline Wein<br>Walls: N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Finished <u>Basement Floor:</u> Foundation<br>Moisture:                                                                                                                                                                                                                                                                                                                                                                                                   | Walls: N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Finished <u>Basement Floor:</u> Foundation<br><u>Moisture:</u>                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Source: MaDEP, 2002, "Indoor Air Sampling and Evaluation Guide, WSC Policy #02-430", Office of Research and Standards, Massachusetts Department of Environmental Protection, April, 2002.

## THE JOHNSON COMPANY, INC. 100 State Street, Suite 600 Montpelier, Vermont 05602 (802) 229-4600

# SOP-JCO-063-002

Page 3 of 3

| Is a basement sump present? $(Y/N)$ $NL$ Is sump sealed to indoor air? $(Y/N)$ $N$                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------|
| boiler room                                                                                                                             |
| Does the basement have any of the following characteristics (e.g. preferential vapor pathways)                                          |
| that might permit soil vapor entry? (Circle all that apply)                                                                             |
|                                                                                                                                         |
| Cracks (Pipe/utility conduits) Other (specify) Floor & rain                                                                             |
| Cracks<br>Foundation/slab drainage<br>Foundation/slab drainage<br>Foundation/slab drainage<br>Sump pumps<br>Segm along slab<br>and wall |
| and wall                                                                                                                                |
| Heating and Ventilation System(s) Present:                                                                                              |
| What types of heating system(s) are used in this building? (Circle all that apply)                                                      |
| Hot air circulation Heat pump Steam Radiation Wood stove                                                                                |
| Other (specify) Air conditioner (central/window) Fireplace (wood/gas)                                                                   |
| Boiler w/Forced Hot water radiators                                                                                                     |
| What types of fuels are used in this building? (Circle all that apply)                                                                  |
| Natural gas Electric Coal Other (specify)                                                                                               |
| Fuel oil Wood Solar                                                                                                                     |
|                                                                                                                                         |
| What type of mechanical ventilation systems are present and/or currently operating in this                                              |
| building? (Circle all that apply)                                                                                                       |
| Central air conditioning Mechanical fans Bathroom vent fan                                                                              |
| Individual air conditioning Kitchen range hood Air-to-air heat exchanger                                                                |
| Open windows Other (specify)                                                                                                            |
|                                                                                                                                         |
| Outdoor Sources of Contamination:                                                                                                       |

Are there any natural gas lines in the vicinity of the building?

Yes

đ

Source: MaDEP, 2002, "Indoor Air Sampling and Evaluation Guide, WSC Policy #02-430", Office of Research and Standards, Massachusetts Department of Environmental Protection, April, 2002.

## THE JOHNSON COMPANY, INC.

SOP-JCO-063-002

100 State Street, Suite 600 Montpelier, Vermont 05602 (802) 229-4600

Page 3 of 3

# Weather Conditions During Sampling:

Outside Temperature (°F):

Prevailing wind direction:

Describe the general weather conditions (e.g., sunny, cloudy, rain):

Was there any significant precipitation (0.1 inches) within 12 hours preceding the sampling event?  $N_{\bullet}$ 

Type of ground cover (e.g., grass, pavement, etc.) outside the building:

grass, pavement swimming pool, concrete walkways

## **General Comments**

Is there any other information about the structural features of this building, the habits of its occupants or potential sources of chemical contaminants to the indoor air that may be of

importance in facilitating the evaluation of the indoor air quality of the building?

mdon not evaluation 5 61 Ma <0. 2 le Vabo Mosay to 04

K:\3-0700-11\Kenilworth North copy\Feasibility Study\FSP\QAPP SOPs\SOP-JCO-063 Site Specific.doc

Source: MaDEP, 2002, "Indoor Air Sampling and Evaluation Guide, WSC Policy #02-430", Office of Research and Standards, Massachusetts Department of Environmental Protection, April, 2002.

# APPENDIX 4

SURFACE SOIL SAMPLING LOGS

| THE JOHNSON COMPANY, INC.<br>100 State Street, Suite 600<br>Montpelier, VT 05602 | Phone: (802) 229-4600<br>Fax: (802) 229-5876<br>www.johnsonco.com |  |  |  |  |  |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|--|
| Discrete Soil Sample Collection Record                                           |                                                                   |  |  |  |  |  |
| Soil Sample Location ID: KPN-JCO · 55 -01                                        |                                                                   |  |  |  |  |  |
| Project Name: Kenilworth Park Landfill                                           | Project #: 3-0700-11 (126)                                        |  |  |  |  |  |
| Site Location: Northeast Washington, DC                                          | Date: 10 114 /08                                                  |  |  |  |  |  |
| Weather Conditions: N. SUNY                                                      | Time on Site: <b>7:30</b>                                         |  |  |  |  |  |
| Sampler: J.B / + 20                                                              |                                                                   |  |  |  |  |  |
| 1. SAMPLE LOCATION AND COLLECTION METHODOLOGY INFORMATION:                       | Acce                                                              |  |  |  |  |  |
| Description of soil sampling location: S. J. Southern Parking                    | INEG                                                              |  |  |  |  |  |
| GPS coordinates of sampling location: Coordinate system:                         |                                                                   |  |  |  |  |  |
| Sample collection method: Hard Auser V. dense L.F                                | . cap                                                             |  |  |  |  |  |
| Sample depth range (ft): 0-6" 4 500                                              |                                                                   |  |  |  |  |  |

#### 2. SAMPLE INFORMATION:

| Sample depth<br>(ft) | Sample type<br>(analyte(s)) | Field or fixed<br>lab analysis                             | Type of<br>container                                 | Collection time | Sample notes, observations, comments |
|----------------------|-----------------------------|------------------------------------------------------------|------------------------------------------------------|-----------------|--------------------------------------|
| 0-6"                 | pH, TOC                     | Fixed- Mitkem<br>Division,<br>Spectrum<br>Analytical, Inc. | 4 oz amber glass<br>jar with<br>Teflon®-lined<br>lid | 7:45            | Ton sand<br>Nebbles                  |

MS/MSD Samples collected from this location

MS/MSD Sample Names:

| Duplicate sample collected from this location Duplic                                                | cate Name/Time:            |
|-----------------------------------------------------------------------------------------------------|----------------------------|
| Duplicate sample collected from this location Duplic<br>General comments / notes: <u>Co-located</u> | W/KPN-JCO-SV-0             |
|                                                                                                     | /                          |
|                                                                                                     |                            |
| Spectium Spectium                                                                                   |                            |
| Lab Designation: <u>Spectium</u><br>Character B223                                                  | Shipper Tracking #: Fed-ex |
| Chain of Custody #:                                                                                 | Supper Tracking #:         |

Reviewed by "server01 projects 3-0700-2 Kenilworth North Peasibility Study FSP Appendix 1 - Field Forms Soil Sample Log- NPS- Kenilworth doc

| THE JOHNSON COMPANY, INC.<br>100 State Street, Suite 600<br>Montpelier, VT 05602                                                                                                                                                                                                                          | Phone: (802) 229-4600<br>Fax: (802) 229-5876<br>www.johnsonco.com |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Discrete Soil Sample Collection Record                                                                                                                                                                                                                                                                    |                                                                   |
| Soil Sample Location ID: KPN - JCO - 55 - 02                                                                                                                                                                                                                                                              |                                                                   |
| Project Name: Kenilworth Park Landfill                                                                                                                                                                                                                                                                    | Project #: <u>3-0700-11 (126)</u>                                 |
| Site Location: Northeast Washington, DC                                                                                                                                                                                                                                                                   | Date: 10/14/88                                                    |
| Weather Conditions: <u>? Summa</u>                                                                                                                                                                                                                                                                        | Time on Site: 7:30                                                |
| Sampler: TRO                                                                                                                                                                                                                                                                                              | -                                                                 |
| 1. SAMPLE LOCATION AND COLLECTION METHODOLOGY INFORMATION:<br>Description of soil sampling location: <u>weet</u> <u>p</u> <u>pad</u> <u>w</u> . <u>A5</u> .<br>GPS coordinates of sampling location: <u>Coordinate system</u> :<br>Sample collection method: <u>have</u><br>Sample depth range (ft): 0-6" | play field, mowed grass<br>some sod ~1-2"                         |

#### 2. SAMPLE INFORMATION:

| Sample depth<br>(ft) | Sample type<br>(analyte(s)) | Field or fixed<br>lab analysis                             | Type of<br>container                                             | Collection time | Sample notes, observations, comments |
|----------------------|-----------------------------|------------------------------------------------------------|------------------------------------------------------------------|-----------------|--------------------------------------|
| 0-6"                 | pH, TOC                     | Fixed- Mitkem<br>Division,<br>Spectrum<br>Analytical, Inc. | 4 oz amb <del>er</del> glass<br>jar with<br>Teflon®-lined<br>lid | 9:30            |                                      |

| MS/MSD Samples collected from this location     MS/MSD Sample Names: |
|----------------------------------------------------------------------|
| Duplicate sample collected from this location Duplicate Name/Time:   |
| General comments / notes: Reddish Bnown Sand O-ID" LF CA? Meterial   |
| Fine crey sund - druse                                               |
| 10' North J KPN-JCO-SV-02                                            |
| Lab Designation: Spect MM                                            |
|                                                                      |
| Chain of Custody #: B223Shipper Tracking #:Fed-ex                    |

.

Reviewed by server01 projects/3-0700-2 Kenilworth North Feasibility Study FSP Appendix 1 - Field Forms Soil Sample Log- NPS- Kenilworth doc

| 100 State Street,<br>Montpelier, VT               |                                                       |                                |                      |                                 | Phone: (802) 229-4600<br>Fax: (802) 229-5876<br>www.johnsonco.com       |
|---------------------------------------------------|-------------------------------------------------------|--------------------------------|----------------------|---------------------------------|-------------------------------------------------------------------------|
|                                                   |                                                       | Discrete Soil                  | Sample Collection R  | ecord                           |                                                                         |
| Soil Sample Loc                                   | ation ID: KPN -                                       | <u>JCO-55-0</u>                | 3                    |                                 |                                                                         |
| Project Name:                                     | Kenilworth Park I                                     | andfill                        |                      |                                 | Project #: 3-0700-11 (126)                                              |
| Site Location:                                    | Northeast Washin                                      | gton, DC                       |                      |                                 | Date: 0/14/08                                                           |
| Weather Conditio                                  | ns: P. Su                                             | AM                             |                      |                                 | Time on Site: 7:30                                                      |
|                                                   | TR                                                    |                                |                      |                                 | •                                                                       |
| Description of soi<br>GPS coordinates             | il sampling location <u>:</u><br>of sampling location | East                           | Coordina             | id ~0, p.                       |                                                                         |
| Sample depth ran                                  | ge (ft): <u>0-6</u> "                                 | Redd                           | 1.34 Bro             | L.F.                            | material - move -<br>forme soci                                         |
|                                                   | ge (ft): <u>0-6</u> "                                 | Field or fixed<br>lab analysis | Type of<br>container | L.F.                            | aderia ( move o<br>forme soc<br>Sample notes, observations,<br>comments |
| Sample depth ran<br>2. SAMPLE INF<br>Sample depth | ge (ft):0-6"                                          | rield or lixed                 | i ype or             | L.F.<br>L.F.<br>Collection time | Sample notes, observations,                                             |

Reviewed by server01/projects/3-0700-2 Kenilworth North Feasibility Study FSP Appendix 1 - Field Forms Soil Sample Log- NPS- Kenilworth doc



| THE JOHNSON COMPANY, INC.<br>100 State Street, Suite 600<br>Montpelier, VT 05602 |                                                                                             |                                                                                               |                                                                           |                 | Phone: (802) 229-4600<br>Fax: (802) 229-5876<br>www.johnsonco.com  |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------|
|                                                                                  |                                                                                             |                                                                                               | Sample Collection R                                                       | lecord          |                                                                    |
| Soil Sample Loc                                                                  | ation ID: KPN -                                                                             | JC0-55.6                                                                                      | 04                                                                        |                 |                                                                    |
| Project Name:                                                                    | Kenilworth Park I                                                                           | andfill                                                                                       |                                                                           |                 | Project #: <u>3-0700-11 (126)</u>                                  |
| Site Location:                                                                   | Northeast Washin                                                                            | gton, DC                                                                                      |                                                                           |                 | Date: 10/14/08                                                     |
| Weather Conditio                                                                 | ons:                                                                                        | 7 50                                                                                          | MAY WA                                                                    | -               | Time on Site: 7. 30                                                |
| Sampler:                                                                         | ()                                                                                          |                                                                                               |                                                                           |                 |                                                                    |
| sampier:                                                                         |                                                                                             | J                                                                                             | •                                                                         |                 |                                                                    |
| I. SAMPLE LO                                                                     | CATION AND CO                                                                               | LLECTION MET                                                                                  | HODOLOGY INFO                                                             | RMATION:        |                                                                    |
| Description of so                                                                | il sampling location:                                                                       | N.E                                                                                           | D Plant                                                                   | Field           |                                                                    |
|                                                                                  |                                                                                             | -                                                                                             | · · ]                                                                     |                 |                                                                    |
|                                                                                  | of sampling location                                                                        |                                                                                               | Coordina                                                                  | ite system:     |                                                                    |
| Sample collection                                                                | n method:                                                                                   | a Aver                                                                                        |                                                                           | 7               |                                                                    |
| Sample depth ran                                                                 | nge (ft):0-6"                                                                               | 300                                                                                           | wr Sun                                                                    | 4 Grav          | R/ - noundly S/DAR,                                                |
| 2. SAMPLE INF                                                                    | FORMATION:                                                                                  |                                                                                               |                                                                           | Mowe            | el - nounded storme,<br>L.F. CAP Material<br>d stass; little god a |
|                                                                                  | Sample type                                                                                 | Field or fixed<br>lab analysis                                                                | Type of<br>container                                                      | Collection time | Sample notes, observations, comments                               |
| Sample depth<br>(ft)                                                             | (analyte(s))                                                                                | Tab analysis                                                                                  |                                                                           | 1               |                                                                    |
| ft)                                                                              |                                                                                             | Fixed- Mitkem<br>Division,<br>Spectrum<br>Analytical, Inc.                                    | 4 oz amber glass<br>jar with<br>Teflon®-lined<br>lid                      | 11:10           |                                                                    |
| ft)<br>1-6"                                                                      | (analyte(s))                                                                                | Fixed- Mitkem<br>Division,<br>Spectrum<br>Analytical, Inc.                                    | jar with<br>Teflon®-lined<br>lid                                          |                 |                                                                    |
| ft)<br>D-6"<br>⊐ MS/MSD Sam                                                      | (analyte(s))<br>pH, TOC                                                                     | Fixed- Mitkem<br>Division,<br>Spectrum<br>Analytical, Inc.                                    | jar with<br>Teflon®-lined<br>lid<br>MS/MSD Sample N                       | Vames:          |                                                                    |
| (ft)<br>D-6"<br>□ MS/MSD Sam<br>□ Duplicate sam                                  | (analyte(s))<br>pH, TOC                                                                     | Fixed- Mitkem<br>Division,<br>Spectrum<br>Analytical, Inc.<br>his location<br>is location Dup | jar with<br>Teflon®-lined<br>lid<br>MS/MSD Sample N                       | Names:          |                                                                    |
| (ft)<br>0-6"<br>□ MS/MSD Sam<br>□ Duplicate sam                                  | (analyte(s))<br>pH, TOC                                                                     | Fixed- Mitkem<br>Division,<br>Spectrum<br>Analytical, Inc.<br>his location<br>is location Dup | jar with<br>Teflon®-lined<br>lid<br>MS/MSD Sample N                       | Names:          |                                                                    |
| (ft)<br>D-6"<br>□ MS/MSD Sam<br>□ Duplicate sam                                  | (analyte(s))<br>pH, TOC                                                                     | Fixed- Mitkem<br>Division,<br>Spectrum<br>Analytical, Inc.<br>his location<br>is location Dup | jar with<br>Teflon®-lined<br>lid<br>MS/MSD Sample N                       | Names:          |                                                                    |
| ft)<br>)-6"<br>] MS/MSD Sam<br>] Duplicate sam                                   | (analyte(s))<br>pH, TOC                                                                     | Fixed- Mitkem<br>Division,<br>Spectrum<br>Analytical, Inc.<br>his location<br>is location Dup | jar with<br>Teflon®-lined<br>lid<br>MS/MSD Sample N                       | Names:          |                                                                    |
| ft)<br>)-6"<br>] MS/MSD Sam<br>] Duplicate sam                                   | (analyte(s))<br>pH, TOC                                                                     | Fixed- Mitkem<br>Division,<br>Spectrum<br>Analytical, Inc.<br>his location<br>is location Dup | jar with<br>Teflon®-lined<br>lid<br>MS/MSD Sample N                       | Names:          |                                                                    |
| (ft)<br>D-6"<br>□ MS/MSD Sam<br>□ Duplicate sam                                  | (analyte(s))<br>pH, TOC<br>ples collected from the<br>ple collected from the<br>ts / notes: | Fixed- Mitkem<br>Division,<br>Spectrum<br>Analytical, Inc.<br>his location<br>is location Dup | jar with<br>Teflon®-lined<br>lid<br>MS/MSD Sample N<br>plicate Name/Time: | iames:          | 54.04                                                              |
| fft)<br>)-6"<br>] MS/MSD Sam<br>] Duplicate sam<br>General comment               | (analyte(s))<br>pH, TOC<br>ples collected from the<br>ple collected from the<br>ts / notes: | Fixed- Mitkem<br>Division,<br>Spectrum<br>Analytical, Inc.<br>his location<br>is location Dup | jar with<br>Teflon®-lined<br>lid<br>MS/MSD Sample N<br>plicate Name/Time: | Names:          | 54.04                                                              |

Reviewed by "server01" projects 3-0700-2 Kenilworth North Feasibility Study FSP Appendix 1 - Field Forms Soil Sample Log- NPS- Kenilworth doe



THE JOHNSON COMPANY, INC. 100 State Street, Suite 600 Montpelier, VT 05602

Phone: (802) 229-4600 Fax: (802) 229-5876 www.johnsonco.com

|                      |                                       | Discrete Soil                  | Sample Collection    | n Record        |                     |                            |
|----------------------|---------------------------------------|--------------------------------|----------------------|-----------------|---------------------|----------------------------|
| Soil Sample Loca     | tion ID: KPN.                         | <u>3co.5</u> 5.0               | 5                    |                 |                     |                            |
| Project Name:        | Kenilworth Park I                     | andfill                        |                      |                 | Project #: _        | 3-0700-11 (126)            |
| Site Location:       | Northeast Washin                      |                                |                      |                 | Date:               | /14/08                     |
| Weather Condition    | ns:                                   | SUMM                           | Vaim                 |                 | Time on Si          | 1:30                       |
| Sampler:             | TR                                    | 0                              |                      |                 |                     |                            |
|                      | CATION AND CO<br>I sampling location: |                                |                      | FORMATION:      | awn                 | area                       |
|                      | of sampling location                  | /                              |                      | inate system:   |                     |                            |
| Sample collection    | method:                               | hand Aug                       | 4                    |                 |                     |                            |
| Sample depth rang    | ge (ft): <u>0-6</u> "                 |                                | Biorn                | F.S.L           | L.F.                | cap materia (              |
| 2. SAMPLE INF        | ORMATION:                             |                                |                      |                 |                     |                            |
| Sample depth<br>(ft) | Sample type<br>(analyte(s))           | Field or fixed<br>lab analysis | Type of<br>container | Collection time | Sample r<br>comment | notes, observations,<br>Is |

| Sample depth | Sample type  | Field or fixed                                             | Type of                                              | Collection time | Sample notes, observations, |
|--------------|--------------|------------------------------------------------------------|------------------------------------------------------|-----------------|-----------------------------|
| (ft)         | (analyte(s)) | lab analysis                                               | container                                            |                 | comments                    |
| 0-6"         | pH, TOC      | Fixed- Mitkem<br>Division,<br>Spectrum<br>Analytical, Inc. | 4 oz amber glass<br>jar with<br>Teflon®-lined<br>lid | 11:50           |                             |

□ MS/MSD Samples collected from this location

MS/MSD Sample Names: \_\_\_\_

| Duplicate | aammla | aallaatad | fram | thin | laastia |
|-----------|--------|-----------|------|------|---------|
|           |        |           |      |      |         |

| Duplicate sample collected from this location Dupl | icate Name/Time:             |
|----------------------------------------------------|------------------------------|
| General comments / notes: <u>Co. located</u>       | W/KPN-JCO-SY.OS              |
| -                                                  |                              |
|                                                    |                              |
| Lab Designation:<br>Chain of Custody #:            |                              |
| Lab Designation:                                   | = 1.1                        |
| Chain of Custody #: 49117                          | Shipper Tracking #: Feel. NX |

Reviewed by 'server01'projects'3-0700-2'Kenilworth Nonh Feasibility Study FSP Appendix 1 - Field Forms' Soil Sample Log- NPS- Kenilworth doc

| THE JOHNSON<br>100 State Street,<br>Montpelier, VT 0 |                                                                       |                                                            |                                                      |                 | Phone: (802) 229-4600<br>Fax: (802) 229-5876<br>www.johnsonco.com |
|------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------|-----------------|-------------------------------------------------------------------|
|                                                      |                                                                       |                                                            | ample Collection R                                   | ecord           |                                                                   |
| Soil Sample Loca                                     | tion ID: KPN -                                                        | 510.55.00                                                  | 6                                                    |                 |                                                                   |
| Project Name:                                        | Kenilworth Park L                                                     | andfill                                                    |                                                      |                 | Project #: <u>3-0700-11 (126)</u>                                 |
| Site Location:                                       | Northeast Washing                                                     | ton, DC                                                    |                                                      |                 | Date: 10/14/08                                                    |
| Weather Condition                                    | ns: <                                                                 | unny 14                                                    | pt                                                   |                 | Time on Site: 1:30                                                |
| Sampler:                                             |                                                                       |                                                            |                                                      |                 | I I                                                               |
| Description of soi<br>GPS coordinates of             | CATION AND COI<br>I sampling location:<br>of sampling location:<br>I_ | JN MO                                                      |                                                      | jorth of        | west playfields                                                   |
| Sample collection<br>Sample depth rang               | method:<br>ge (ft):0-6"                                               | md Auger<br>FSL.                                           | brand M                                              | LF. Ca          | p materia                                                         |
| 2. SAMPLE INF                                        | ORMATION:                                                             |                                                            |                                                      |                 | •                                                                 |
| Sample depth<br>(ft)                                 | Sample type<br>(analyte(s))                                           | Field or fixed<br>lab analysis                             | Type of<br>container                                 | Collection time | Sample notes, observations, comments                              |
| 0-6"                                                 | pH, TOC                                                               | Fixed- Mitkem<br>Division,<br>Spectrum<br>Analytical, Inc. | 4 oz amber glass<br>jar with<br>Teflon®-lined<br>lid | 15:40           |                                                                   |
| MS/MSD Sam                                           | ples collected from the                                               | is location                                                | MS/MSD Sample N                                      | lames:          |                                                                   |
| Duplicate samp                                       | ole collected from thi                                                | s location Dup                                             | licate Name/Time: _                                  |                 |                                                                   |
| General comment                                      | s / notes:                                                            |                                                            |                                                      |                 |                                                                   |
|                                                      |                                                                       |                                                            |                                                      |                 | · · · · · · · · · · · · · · · · · · ·                             |
|                                                      |                                                                       |                                                            |                                                      |                 |                                                                   |
|                                                      | 5.11                                                                  | 1.4                                                        |                                                      |                 |                                                                   |
| Lab Designation:_                                    | Jerry                                                                 |                                                            |                                                      |                 | 1                                                                 |
| Chain of Custody                                     | #: <b>011</b>                                                         | 7                                                          | Shipper 1                                            | Fracking #:     | A-ex                                                              |
| Reviewed by<br>'server01'projects/3-0700-            | 2'Kenilworth North Feasibility                                        |                                                            |                                                      |                 |                                                                   |

| THE JOHNSON COMPANY, INC.                                         | Phone: (802) 229-4600      |
|-------------------------------------------------------------------|----------------------------|
| 100 State Street, Suite 600                                       | Fax: (802) 229-5876        |
| Montpelier, VT 05602                                              | www.johnsonco.com          |
| Montpeller, VI 05002 - Jco Discrete Soil Sample Collection Record |                            |
| Soil Sample Location ID: <u>47N.55.0</u> 7 (5:45                  |                            |
| Project Name: Kenilworth Park Landfill                            | Project #: 3-0700-11 (126) |
| Site Location:Northeast Washington, DC                            | Date: 10/14/08             |
| Weather Conditions:                                               | Time on Site: 7:30         |
| Sampler:                                                          |                            |
|                                                                   |                            |

### 1. SAMPLE LOCATION AND COLLECTION METHODOLOGY INFORMATION:

| Description of soil sampling location: | Tall grass / brush |                       |
|----------------------------------------|--------------------|-----------------------|
| GPS coordinates of sampling location:  | Coordinate         | system:               |
| Sample collection method:              | Hand Auger         | west                  |
| Sample depth range (ft): 0-6"          | Unno               | went N. A. plunhe (d) |
|                                        | •                  |                       |

#### 2. SAMPLE INFORMATION:

| Sample depth<br>(ft) | Sample type<br>(analyte(s)) | Field or fixed<br>lab analysis                             | Type of<br>container                                 | Collection time | Sample notes, observations, comments |
|----------------------|-----------------------------|------------------------------------------------------------|------------------------------------------------------|-----------------|--------------------------------------|
| 0-6"                 | pH, TOC                     | Fixed- Mitkem<br>Division,<br>Spectrum<br>Analytical, Inc. | 4 oz amber glass<br>jar with<br>Teflon®-lined<br>lid | 15:45           |                                      |

I MS/MSD Samples collected from this location ς.

MS/MSD Sample Names:

| Duplicate sample collected from this local      | ion Duplicate Name/Time: KPN - 500-55-07 DUP | 15:50 |
|-------------------------------------------------|----------------------------------------------|-------|
| General comments / notes:                       |                                              |       |
|                                                 |                                              |       |
|                                                 |                                              |       |
| Lab Designation: Spectru<br>Chain of Custody #: | m                                            |       |
| Chain of Custody #: 9223                        | Shipper Tracking #:Fel.ex                    |       |

Reviewed by "server01/projects/3-0700-2/Kenilworth North Feasibility Study/FSP/Appendix 1 - Field Forms Soil Sample Log- NPS- Kenstworth doc

| THE JOHNSON<br>100 State Street<br>Montpelier, VT |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                                                      |                  | Phone: (802) 229-4600<br>Fax: (802) 229-5876<br>www.johnsonco.com |     |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------|------------------|-------------------------------------------------------------------|-----|
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            | Sample Collection F                                  | Record           |                                                                   |     |
| Soil Sample Loc                                   | ation ID: KPN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -jco.55.                                                   | 08                                                   |                  |                                                                   |     |
| Project Name:                                     | Kenilworth Park I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | andfill                                                    |                                                      |                  | Project #: 3-0700-11 (126)                                        |     |
| Site Location:                                    | Northeast Washin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gton, DC                                                   |                                                      |                  | Date: 10/14/08                                                    |     |
| Weather Conditio                                  | ons:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.0000                                                     | Waim                                                 |                  | Time on Site: 7:30                                                |     |
|                                                   | TR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            |                                                      |                  |                                                                   |     |
| Sampler:                                          | 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Y                                                          |                                                      |                  |                                                                   |     |
| Description of so                                 | OCATION AND CO<br>oil sampling location:<br>of sampling location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0-fsid                                                     | HODOLOGY INFO                                        | lds in 1         | •                                                                 | are |
| Sample collection                                 | n method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ut auger                                                   |                                                      |                  | /                                                                 |     |
| Sample depth rar                                  | nge (ft): 0-6"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rea                                                        | 1 fine                                               | Sand -           | stray w/depty                                                     |     |
| 2. SAMPLE INI<br>Sample depth<br>(ft)             | FORMATION:<br>Sample type<br>(analyte(s))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Field or fixed<br>lab analysis                             | Type of<br>container                                 | Collection time  | Sample notes, observations,<br>comments                           |     |
| 0-6"                                              | pH, TOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fixed- Mitkem<br>Division,<br>Spectrum<br>Analytical, Inc. | 4 oz amber glass<br>jar with<br>Teflon®-lined<br>lid | 12:30            |                                                                   |     |
| Duplicate sam                                     | ples collected from the ple collected from th | is location Dup                                            |                                                      |                  |                                                                   |     |
|                                                   | ts / notes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                            |                                                      |                  |                                                                   |     |
|                                                   | 58-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | KIN-300                                                    | -54-00                                               | - 00.0           | cated                                                             |     |
| Lab Designation:<br>Chain of Custody              | · ( 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3<br>3                                                     | Shipper                                              | Fracking #:F     | ed - ex                                                           |     |
| Reviewed by<br>server01*projects\3-0700           | -2 Kenilworth North Feasibility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Study FSP Appendix 1 - Fiel                                | d Forms Soil Samole Log- NPS                         | - Kenilworth.doc |                                                                   |     |

| THE JOHNSON<br>100 State Street, S<br>Montpelier, VT 0                                                                                                                                                                                                                                                                                              |                                                                   |                                                            |                                                      |                 | Phone: (802) 229-4600<br>Fax: (802) 229-5876<br>www.johnsonco.com |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------|-----------------|-------------------------------------------------------------------|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                     |                                                                   |                                                            | Sample Collection R                                  | tecord          |                                                                   |  |  |  |  |
| Soil Sample Loca                                                                                                                                                                                                                                                                                                                                    | tion ID: KPN                                                      | - 200 -                                                    | 55.09                                                |                 |                                                                   |  |  |  |  |
| Project Name:                                                                                                                                                                                                                                                                                                                                       | Project Name: Kenilworth Park Landfill Project #: 3-0700-11 (126) |                                                            |                                                      |                 |                                                                   |  |  |  |  |
| Site Location:                                                                                                                                                                                                                                                                                                                                      | Northeast Washing                                                 | gton, DC                                                   |                                                      |                 | Date: 10/14/08                                                    |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                     |                                                                   |                                                            |                                                      |                 | Time on Site: 7:30                                                |  |  |  |  |
| Sampler:                                                                                                                                                                                                                                                                                                                                            |                                                                   | TRO                                                        | P (3                                                 | :05             |                                                                   |  |  |  |  |
| 1. SAMPLE LOCATION AND COLLECTION METHODOLOGY INFORMATION:         Description of soil sampling location:       N. J. P. lof & Stars         GPS coordinates of sampling location:       Coordinate system:         Sample collection method:       Sample depth range (ft):       0-6"         Z. SAMPLE INFORMATION:       Z. SAMPLE INFORMATION: |                                                                   |                                                            |                                                      |                 |                                                                   |  |  |  |  |
| Sample depth<br>(ft)                                                                                                                                                                                                                                                                                                                                | Sample type<br>(analyte(s))                                       | Field or fixed<br>lab analysis                             | Type of<br>container                                 | Collection time | Sample notes, observations, comments                              |  |  |  |  |
| 0-6"                                                                                                                                                                                                                                                                                                                                                | pH, TOC                                                           | Fixed- Mitkem<br>Division,<br>Spectrum<br>Analytical, Inc. | 4 oz amber glass<br>jar with<br>Teflon®-lined<br>lid | 13:05           |                                                                   |  |  |  |  |
| MS/MSD Samples collected from this location     MS/MSD Sample Names:                                                                                                                                                                                                                                                                                |                                                                   |                                                            |                                                      |                 |                                                                   |  |  |  |  |
| Duplicate samp                                                                                                                                                                                                                                                                                                                                      | le collected from thi                                             | s location Dup                                             | licate Name/Time:                                    |                 |                                                                   |  |  |  |  |
| General comments                                                                                                                                                                                                                                                                                                                                    | / notes:                                                          | @ SI                                                       | 1-07                                                 |                 |                                                                   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                     | ocated                                                            | a KPN                                                      | 1-07<br>1-JCO.                                       | JV - 07         | ł                                                                 |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                     | <u> </u>                                                          | [                                                          |                                                      |                 |                                                                   |  |  |  |  |

| Lab Designation:    | pec trum |                           |
|---------------------|----------|---------------------------|
| Chain of Custody #: | 8223     | Shipper Tracking #:Fcd ex |

Reviewed by "server01/projects/3-0700-2/Kenilworth North Feasibility Study FSP/Appendix 1 - Field Forms Soil Sample Log- NPS- Kenilworth.doc

| Soil Sample Location ID: ドアハーブCマームS・10  |                    |  |  |  |  |  |  |  |
|-----------------------------------------|--------------------|--|--|--|--|--|--|--|
| Project Name: Kenilworth Park Landfill  | Project #:         |  |  |  |  |  |  |  |
| Site Location: Northeast Washington, DC | Date: 0/14/08      |  |  |  |  |  |  |  |
| Weather Conditions: 5                   | Time on Site: 7:30 |  |  |  |  |  |  |  |
| Sampler:                                |                    |  |  |  |  |  |  |  |

**Discrete Soil Sample Collection Record** 

#### 1. SAMPLE LOCATION AND COLLECTION METHODOLOGY INFORMATION:

| Description of soil sampling location: | N.W. St new track    |   |
|----------------------------------------|----------------------|---|
| GPS coordinates of sampling location:  | Coordinate system:   | _ |
| Sample collection method:              | ma Aver              |   |
| Sample depth range (ft):0-6"           | prown sound w Storts |   |

#### 2. SAMPLE INFORMATION:

| Sample depth<br>(ft) | Sample type<br>(analyte(s)) | Field or fixed<br>lab analysis                             | Type of<br>container                                 | Collection time | Sample notes, observations, comments |
|----------------------|-----------------------------|------------------------------------------------------------|------------------------------------------------------|-----------------|--------------------------------------|
| 0-6"                 | рН, ТОС                     | Fixed- Mitkem<br>Division,<br>Spectrum<br>Analytical, Inc. | 4 oz amber glass<br>jar with<br>Teflon®-lined<br>lid | (3:30           |                                      |

□ MS/MSD Samples collected from this location

MS/MSD Sample Names:

| Duplicate sample collected | ed from this location | Duplicate Name | /Time:              |             |             |
|----------------------------|-----------------------|----------------|---------------------|-------------|-------------|
| General comments / notes:  | -> ex                 | PN SV · ON     | C to                | 2 57        | recent till |
|                            |                       | 10             | ADM-MO              | ned a       | NG          |
|                            | moved                 | ash/glas       | 5 6-8"              | <b>B</b> 65 |             |
| Lab Designation:           | pectrum<br>B124       | - / J.         |                     |             |             |
| Chain of Custody #:        | 8224                  |                | Shipper Tracking #: | Fed.        | ¥           |

Reviewed by. server01/projects/3-0700-2/Kenilworth North Feasibility Study/FSP/Appendix 1 - Field Forms Soil Sample Log- NPS- Kenilworth.doc

| THE JOHNSON COMPANY, INC.   |  |
|-----------------------------|--|
| 100 State Street, Suite 600 |  |
| Montpelier, VT 05602        |  |

| Discrete Soil Sample Collection Record             |                                   |
|----------------------------------------------------|-----------------------------------|
| Soil Sample Location ID: KPN - TCO - 55 - 11 15:55 |                                   |
| Project Name: Kenilworth Park Landfill             | Project #: <u>3-0700-11 (126)</u> |
| Site Location: Northeast Washington, DC            | Date: 10/14/08                    |
| Weather Conditions: SUNAY & Weim                   | Time on Site: 7:30                |
| Sampler: 720                                       |                                   |

#### 1. SAMPLE LOCATION AND COLLECTION METHODOLOGY INFORMATION:

| Description of soil sampling location: | newed | asea               | frown | clargey. scored |
|----------------------------------------|-------|--------------------|-------|-----------------|
| GPS coordinates of sampling location:  |       | Coordinate system: |       |                 |
| Sample collection method:              | Arges |                    |       |                 |
| Sample depth range (ft): 0-6"          |       |                    |       |                 |

#### 2. SAMPLE INFORMATION:

| Sample depth | Sample type  | Field or fixed                                             | Type of                                              | Collection time | Sample notes, observations, |
|--------------|--------------|------------------------------------------------------------|------------------------------------------------------|-----------------|-----------------------------|
| (ft)         | (analyte(s)) | lab analysis                                               | container                                            |                 | comments                    |
| 0-6"         | рН, ТОС      | Fixed- Mitkem<br>Division,<br>Spectrum<br>Analytical, Inc. | 4 oz amber glass<br>jar with<br>Teflon®-lined<br>lid | 15:55           |                             |

□ MS/MSD Samples collected from this location

MS/MSD Sample Names: \_\_\_\_\_

Duplicate Name/Time:

Duplicate sample collected from this location

General comments / notes:

| Lab Designation:    | Spectrum |                              |
|---------------------|----------|------------------------------|
| Chain of Custody #: | 8224     | Shipper Tracking #: Fed - eX |

Revnewed by: "server01/projects'3-0700-2:Kenilworth North/Feasibility Study FSP:Appendix 1 - Field Forms Sorl Sample Log- NPS- Kenilworth doc





THE JOHNSON COMPANY, INC. 100 State Street, Suite 600 Montpelier, VT 05602

| Discrete Soil Sample Collection Record                                                                                  |                                   |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Soil Sample Location ID: <u>KPN - JCO -</u> 55 - 12 [6:07                                                               |                                   |
| Project Name: Kenilworth Park Landfill                                                                                  | Project #: <u>3-0700-11 (126)</u> |
| Site Location: Northeast Washington, DC I                                                                               | Date: 0 114/08                    |
| Weather Conditions: Survey & Wal m                                                                                      | Time on Site: <u>): '70</u>       |
| Sampler: <b>Rø</b> (                                                                                                    |                                   |
| 1. SAMPLE LOCATION AND COLLECTION METHODOLOGY INFORMATION:<br>Description of soil sampling location: Coordinate system: | ec Center                         |
| Sample collection method: <u>Hund</u> <u>Avge</u> ( <u>Tow</u> <u>s</u>                                                 | dy (van to sand                   |
| Sample depth range (ft): 0-6"                                                                                           |                                   |

#### 2. SAMPLE INFORMATION:

| Sample depth | Sample type  | Field or fixed                                             | Type of                                              | Collection time | Sample notes, observations, |
|--------------|--------------|------------------------------------------------------------|------------------------------------------------------|-----------------|-----------------------------|
| (ft)         | (analyte(s)) | lab analysis                                               | container                                            |                 | comments                    |
| 0-6"         | рН, ТОС      | Fixed- Mitkem<br>Division,<br>Spectrum<br>Analytical, Inc. | 4 oz amber glass<br>jar with<br>Teflon®-lined<br>lid | 16:07           | _                           |

MS/MSD Samples collected from this location

MS/MSD Sample Names:

Duplicate Name/Time:

Duplicate sample collected from this location

General comments / notes:\_\_\_\_

| Lab Designation:    | Spectium |                     |          |
|---------------------|----------|---------------------|----------|
| Chain of Custody #: | 8124     | Shipper Tracking #: | Fed . ex |

Reviewed by "server01"projects/3-0700-2" Kenilworth North Peasibility Study FSP Appendix 1 - Field Forms Soil Sample Log- NPS- Kenilworth doc



| THE JOHNSON COMPANY, INC.<br>100 State Street, Suite 600<br>Montpelier, VT 05602                                                                                                      | Phone: (802) 229-4600<br>Fax: (802) 229-5876<br>www.johnsonco.com |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Discrete Soil Sample Collection Record                                                                                                                                                |                                                                   |
| Soil Sample Location ID: KAN · J(0 - 5 5 - 1 3                                                                                                                                        |                                                                   |
| Project Name: Kenilworth Park Landfill                                                                                                                                                | Project #: <u>3-0700-11 (126)</u>                                 |
| Site Location: Northeast Washington, DC                                                                                                                                               | Date: <u>(0/ ) /09</u><br>Time on Site: <u>1.30</u>               |
| Weather Conditions:                                                                                                                                                                   | Time on Site:30                                                   |
| Sampler:                                                                                                                                                                              | •                                                                 |
| 1. SAMPLE LOCATION AND COLLECTION METHODOLOGY INFORMATION:<br>Description of soil sampling location: N. J. Le Luct Course<br>GPS coordinates of sampling location: Coordinate system: | orts @ N. end A<br>comm. comfe                                    |
| Sample collection method:                                                                                                                                                             |                                                                   |
| Sample depth range (ft):0-6"                                                                                                                                                          |                                                                   |

#### 2. SAMPLE INFORMATION:

| Sample depth<br>(ft) | Sample type<br>(analyte(s)) | Field or fixed<br>lab analysis                             | Type of<br>container                                 | Collection time | Sample notes, observations, comments |
|----------------------|-----------------------------|------------------------------------------------------------|------------------------------------------------------|-----------------|--------------------------------------|
| 0-6"                 | pH, TOC                     | Fixed- Mitkem<br>Division,<br>Spectrum<br>Analytical, Inc. | 4 oz amber glass<br>jar with<br>Teflon®-lined<br>lid | 15:20           |                                      |

| □ MS/MSD Samples collected from this location MS/MSD Sample Names:                                            |        |
|---------------------------------------------------------------------------------------------------------------|--------|
| Duplicate sample collected from this location Duplicate Name/Time:                                            |        |
| General comments / notes: Moued area                                                                          |        |
| composit soil sample collected from suil Bucket.                                                              |        |
| Composit soil sample collected from Suil Bucket.<br>Sample Date 10/16/08 Time 16:00 1×802 Amber Jar for TCLP: | metals |
| Lab Designation Spectrum                                                                                      |        |
| Chain of Custody #:                                                                                           |        |

Reviewed by: "server01'projects/3-0700-2'Kenilworth North Feasibility Study/FSP-Appendix 1 - Field Forms'Soil Sample Log- NPS- Kenilworth doc



| Project Name:        | tion ID: <u>KPS · ·</u>     |                                | ample Collection R        | ecord           | www.johnsonco.com                    |
|----------------------|-----------------------------|--------------------------------|---------------------------|-----------------|--------------------------------------|
| Project Name:        | tion ID: Kas ·              | TLA. 65. A                     |                           |                 |                                      |
| Project Name:        |                             | 10-31-0                        | 1 (0:0                    | 55              |                                      |
| Site Location:       | Kenilworth Park I           | andfill                        |                           |                 | Project #: _3-0700-11 (126)          |
|                      | Northeast Washin            | gton, DC                       |                           |                 | Date: 10/15/08                       |
| Weather Condition    | ns: 4J                      | AAY WELA                       | A                         |                 | Time on Site: 7:00                   |
| o caller Contration  | s                           | TRO                            |                           |                 |                                      |
| sampler:             |                             | 1100                           |                           |                 |                                      |
|                      |                             | LLECTION METH                  |                           |                 |                                      |
| Description of soil  | sampling location:          | in b                           | srush a                   | Lar Wh          | He Branch                            |
|                      |                             |                                |                           |                 |                                      |
|                      |                             |                                | Coordina                  | ie system:      |                                      |
|                      | method:                     |                                |                           |                 |                                      |
| Sample depth rang    | e (ft): <u>0-6</u> "        | hand                           | auser                     |                 |                                      |
|                      |                             |                                | 0                         |                 |                                      |
| 2. SAMPLE INFO       | ORMATION:                   |                                |                           |                 |                                      |
| Sample depth<br>(ft) | Sample type<br>(analyte(s)) | Field or fixed<br>lab analysis | Type of<br>container      | Collection time | Sample notes, observations, comments |
| 0-6"                 | pH, TOC                     | Fixed- Mitkem                  | 4 oz amber glass          |                 | NK brown                             |
|                      |                             | Division,<br>Spectrum          | jar with<br>Teflon®-lined | 10:05           | Dr. brown<br>Ican                    |
|                      |                             | Analytical, Inc.               | lid                       | L               | Ican                                 |
|                      |                             |                                |                           | _               |                                      |
| MS/MSD Samp          | oles collected from t       | his location                   | MS/MSD Sample N           | ames:           |                                      |
| Duplicate sample     | le collected from the       | , <b>1</b> ·                   | licate Name/Time:         |                 | <u> </u>                             |
| General comments     | s / notes:                  | Heave                          | y under                   | wush; sc        | cant surface Je                      |
|                      |                             | ۰.                             | 1                         | ,               |                                      |
|                      |                             |                                |                           |                 |                                      |
|                      |                             | 1                              |                           |                 |                                      |
| ah Decimation        | 5pec<br>#:                  | trum                           |                           |                 |                                      |
| Lau Designation:     |                             |                                |                           | Tracking #: Fe  | 1                                    |
|                      | P14                         | 1                              |                           | · · · ·         |                                      |

Reviewed by server01/projects/3-0700-2/Kenilworth North Feasibility Study/FSP Appendix 1 - Field Forms Soil Sample Log- NPS- Kenilworth doc

| THE JOHNSON COMPANY, INC.<br>100 State Street, Suite 600<br>Montpeller, VT 05602                                       | Phone: (802) 229-4600<br>Fax: (802) 229-5876<br>www.johnsonco.com |
|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Discrete Soil Sample Collection Record                                                                                 |                                                                   |
| Soil Sample Location ID: KPS.JLU-55-02 (0:15                                                                           |                                                                   |
| Project Name: Kenilworth Park Landfill                                                                                 | Project #: 3-0700-11 (126)                                        |
| Site Location: Northeast Washington, DC                                                                                | Date: 10/15/08                                                    |
| Weather Conditions: West M                                                                                             | Time on Site: 7.00                                                |
| Sampler:                                                                                                               | •                                                                 |
| 1. SAMPLE LOCATION AND COLLECTION METHODOLOGY INFORMATION:<br>Description of soil sampling location: 015ide self fince | -new river                                                        |
| GPS coordinates of sampling location:Coordinate system:                                                                |                                                                   |
| Sample collection method: Nand auser                                                                                   |                                                                   |
| Sample depth range (ft): 0-6"                                                                                          |                                                                   |
|                                                                                                                        |                                                                   |

# 2. SAMPLE INFORMATION:

| Sample depth<br>(ft) | Sample type<br>(analyte(s)) | Field or fixed<br>lab analysis                             | Type of<br>container                                 | Collection time | Sample notes, observations, comments |
|----------------------|-----------------------------|------------------------------------------------------------|------------------------------------------------------|-----------------|--------------------------------------|
| 0-6"                 | pH, TOC                     | Fixed- Mitkem<br>Division,<br>Spectrum<br>Analytical, Inc. | 4 oz amber glass<br>jar with<br>Teflon®-lined<br>lid | 10:15           | brown sand                           |

MS/MSD Samples collected from this location

MS/MSD Sample Names: \_\_\_\_

Duplicate sample collected from this location

Duplicate Name/Time:

This jumped iak deer General comments / notes: A

| Lab Designation:    | Spetrum |                              |
|---------------------|---------|------------------------------|
| Chain of Custody #: | 8225    | Shipper Tracking #: Fed . ex |

Reviewed by: server01/projects/3-0700-2/Kenilworth North Feasibility Study FSP Appendix 1 - Field Forms Soil Sample Log- NPS- Kenilworth doe



| THE JOHNSON COMPANY, INC.                                                                                               | Phone: (802) 229-4600             |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| 100 State Street, Suite 600                                                                                             | Fax: (802) 229-5876               |
| Montpelier, VT 05602                                                                                                    | www.johnsonco.com                 |
| Discrete Soil Sample Collection Record                                                                                  |                                   |
| Soil Sample Location ID: KCS - JCO - 55.03 10:25                                                                        |                                   |
| Project Name: Kenilworth Park Landfill                                                                                  | Project #: <u>3-0700-11 (126)</u> |
| Site Location:Northeast Washington, DC                                                                                  | Date: 10/15/08                    |
| Weather Conditions: Sunny Warm                                                                                          | Time on Site: 7:00                |
| Sampler: 7 2 -                                                                                                          |                                   |
| 1. SAMPLE LOCATION AND COLLECTION METHODOLOGY INFORMATION:<br>Description of soil sampling location: Bruch / over grown | L.E. cap                          |
| GPS coordinates of sampling location:Coordinate system:                                                                 |                                   |
|                                                                                                                         |                                   |

Sample collection method:

0.6" Hand Arger Sample depth range (ft):\_

#### 2. SAMPLE INFORMATION:

| Sample depth | Sample type  | Field or fixed                                             | Type of                                              | Collection time | Sample notes, observations,           |
|--------------|--------------|------------------------------------------------------------|------------------------------------------------------|-----------------|---------------------------------------|
| (ft)         | (analyte(s)) | lab analysis                                               | container                                            |                 | comments                              |
| 0-6"         | pH, TOC      | Fixed- Mitkem<br>Division,<br>Spectrum<br>Analytical, Inc. | 4 oz amber glass<br>jar with<br>Teflon®-lined<br>lid | 10:25           | Redoligh sund<br>little proved & 5.1f |

□ MS/MSD Samples collected from this location

MS/MSD Sample Names:

Duplicate sample collected from this location Duplicate Name/Time: Heavy Underbrush General comments / notes:\_\_

| Lab Designation:    | Spectrum |                     |        |  |
|---------------------|----------|---------------------|--------|--|
| Chain of Custody #: | 8725     | Shipper Tracking #: | Fed-ex |  |

Reviewed by server01:projects/3-0700-2 Kenilworth North Feasibility Study FSP Appendix 1 - Field Forms Soil Sample Log- NPS- Kenilworth doc

| THE JOHNSON COMPANY, INC.                                  | Phone: (802) 229-4600             |
|------------------------------------------------------------|-----------------------------------|
| 100 State Street, Suite 600                                | Fax: (802) 229-5876               |
| Montpelier, VT 05602                                       | www.johnsonco.com                 |
| Discrete Soil Sample Collection Record                     |                                   |
| Soil Sample Location ID: KP5 - J(0.53.04 /0:00             |                                   |
| Project Name: Kenilworth Park Landfill                     | Project #: <u>3-0700-11 (126)</u> |
| Site Location: Northeast Washington, DC                    | Date:/\$/15/08                    |
| Weather Conditions: Sunny Warm                             | Time on Site: $7:00$              |
| Sampler: TRO                                               |                                   |
| 1. SAMPLE LOCATION AND COLLECTION METHODOLOGY INFORMATION: |                                   |

| Description of soil sampling location: | Scown | UP LF      | ca >    |  |
|----------------------------------------|-------|------------|---------|--|
| GPS coordinates of sampling location:  |       | Coordinate | system: |  |
| Sample collection method:              | nand  | augel      |         |  |
| Sample depth range (ft): 0-6"          |       | 0          |         |  |

#### 2. SAMPLE INFORMATION:

| Sample depth<br>(ft) | Sample type<br>(analyte(s)) | Field or fixed<br>lab analysis         | Type of<br>container                          | Collection time | Sample notes, observations,<br>comments |
|----------------------|-----------------------------|----------------------------------------|-----------------------------------------------|-----------------|-----------------------------------------|
| 0-6"                 | pH, TOC                     | Fixed- Mitkem<br>Division,<br>Spectrum | 4 oz amber glass<br>jar with<br>Teflon®-lined | 00 : 00         | red/brown                               |
|                      |                             | Analytical, Inc.                       | lid                                           |                 | Gand gravel                             |

MS/MSD Samples collected from this location

MS/MSD Sample Names:

Duplicate Name/Time:

Duplicate sample collected from this location General comments / notes: Over grown field

| Lab Designation:    | rectrum |                      |       |
|---------------------|---------|----------------------|-------|
| Chain of Custody #: | 9225    | _Shipper Tracking #: | ed.ex |

Reviewed by server01/projects3-0700-2:Kenilworth North Feasibility Study FSP Appendix 1 - Field Forms Soil Sample Log- NPS- Kenilworth doc

| THE JOHNSON COMPANY, INC.                                  | Phone: (802) 229-4600      |
|------------------------------------------------------------|----------------------------|
| 100 State Street, Suite 600                                | Fax: (802) 229-5876        |
| Montpelier, VT 05602                                       | www.johnsonco.com          |
| Discrete Soil Sample Collection Record                     |                            |
| Soil Sample Location ID: KPS-JCO-55-05 (1:00               |                            |
| Project Name: Kenilworth Park Landfill                     | Project #: 3-0700-11 (126) |
| Site Location: Northeast Washington, DC                    | Date: 10/15/08             |
| Weather Conditions: Sumy Warm                              | Time on Site: 7.00         |
| Sampler:726                                                | ·                          |
| 1. SAMPLE LOCATION AND COLLECTION METHODOLOGY INFORMATION: |                            |

| Description of soil sampling loca | ation: Grass | a LE Cap           |  |
|-----------------------------------|--------------|--------------------|--|
| GPS coordinates of sampling loc   | cation:      | Coordinate system: |  |
| Sample collection method:         |              |                    |  |
| Sample depth range (ft):0-6       | 5"           |                    |  |

#### 2. SAMPLE INFORMATION:

| Sample depth<br>(ft) | Sample type<br>(analyte(s)) | Field or fixed<br>lab analysis | Type of<br>container         | Collection time | Sample notes, observations, comments |
|----------------------|-----------------------------|--------------------------------|------------------------------|-----------------|--------------------------------------|
| 0-6"                 | pH, TOC                     | Fixed- Mitkem<br>Division,     | 4 oz amber glass<br>jar with | 11:00           | denze red                            |
|                      |                             | Spectrum<br>Analytical, Inc.   | Teflon®-lined<br>lid         | •               | ganel grave                          |

MS/MSD Samples collected from this location

MS/MSD Sample Names:

Duplicate sample collected from this location

Duplicate Name/Time:

General comments / notes: Over grown field

| Lab Designation:    | Spectrum |                             |
|---------------------|----------|-----------------------------|
| Chain of Custody #: | 8225     | Shipper Tracking #: Fed. 24 |

Reviewed by "server01/projects/3-0700-2 Kenilworth North Feasibility Study FSP Appendix 1 - Field Forms Soil Sample Log- NPS- Kenilworth.doc

| THE JOHNSON COMPANY, INC.<br>100 State Street, Suite 600<br>Montpelier, VT 05602                                                                                                    | Phone: (802) 229-4600<br>Fax: (802) 229-5876<br>www.johnsonco.com |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Discrete Soil Sample Collection Record                                                                                                                                              |                                                                   |
| Soil Sample Location ID: KTS - JCO - 55.06 9:50                                                                                                                                     |                                                                   |
| Project Name: Kenilworth Park Landfill                                                                                                                                              | Project #: <u>3-0700-11 (126)</u>                                 |
| Site Location: Northeast Washington, DC                                                                                                                                             | Date: 10/15/08                                                    |
| Weather Conditions: Warm P. Sunny                                                                                                                                                   | Date: <u>10/15/08</u><br>Time on Site: <u>7:00</u>                |
| Sampler: TRO                                                                                                                                                                        |                                                                   |
| 1. SAMPLE LOCATION AND COLLECTION METHODOLOGY INFORMATION:                                                                                                                          |                                                                   |
| Description of soil sampling location: <u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u> |                                                                   |
| GPS coordinates of sampling location:Coordinate system:                                                                                                                             |                                                                   |

Sample collection method:\_

General comments / notes:\_\_

Sample depth range (ft): 0-6"

#### 2. SAMPLE INFORMATION:

| Sample depth | Sample type  | Field or fixed                                             | Type of                                              | Collection time | Sample notes, observations,  |
|--------------|--------------|------------------------------------------------------------|------------------------------------------------------|-----------------|------------------------------|
| (ft)         | (analyte(s)) | lab analysis                                               | container                                            |                 | comments                     |
| 0-6"         | pH, TOC      | Fixed- Mitkem<br>Division,<br>Spectrum<br>Analytical, Inc. | 4 oz amber glass<br>jar with<br>Teflon®-lined<br>lid | 9:50            | Similar L.F.<br>cap material |

□ MS/MSD Samples collected from this location

MS/MSD Sample Names:

\_\_\_\_Shipper Tracking #:\_\_\_\_\_

Fed-ex

Duplicate sample collected from this location

Duplicate Name/Time:

Lab Designation:\_

Chain of Custody #:\_

Reviewed by [server01] projects: 3-0700-2 Kenilworth North Feasibility Study FSP Appendix 1 - Field Forms Soil Sample Log- NPS- Kenilworth doc

Spectrum \$225

| THE JOHNSON COMPANY, INC.                                  | Phone: (802) 229-4600      |
|------------------------------------------------------------|----------------------------|
| 100 State Street, Suite 600                                | Fax: (802) 229-5876        |
| Montpelier, VT 05602                                       | www.johnsonco.com          |
| Discrete Soil Sample Collection Record                     |                            |
| Soil Sample Location ID: KPS-Jco-55-07 (0:55               |                            |
| Project Name: Kenilworth Park Landfill                     | Project #: 3-0700-11 (126) |
| Site Location: Northeast Washington, DC                    | Date: 10/15/08             |
| Weather Conditions: Grass on LE Cap                        | Time on Site: 7:00         |
| Sampler:                                                   |                            |
| 1. SAMPLE LOCATION AND COLLECTION METHODOLOGY INFORMATION: |                            |
| Description of soil sampling location: <u>Sizent stars</u> | on Lt. cap                 |
| GPS coordinates of sampling location:Coordinate system:    |                            |
| Sample collection method: Hand Auger                       |                            |

Sample depth range (ft): 0-6"

#### 2. SAMPLE INFORMATION:

| Sample depth<br>(ft) | Sample type<br>(analyte(s)) | Field or fixed<br>lab analysis                             | Type of<br>container                                 | Collection time | Sample notes, observations, comments |
|----------------------|-----------------------------|------------------------------------------------------------|------------------------------------------------------|-----------------|--------------------------------------|
| 0-6"                 | рН, ТОС                     | Fixed- Mitkem<br>Division,<br>Spectrum<br>Analytical, Inc. | 4 oz amber glass<br>jar with<br>Teflon®-lined<br>lid | 10:15           | Reddigh<br>sandy grazel              |

□ MS/MSD Samples collected from this location

MS/MSD Sample Names: \_\_\_\_\_

Duplicate sample collected from this location

Duplicate Name/Time:

General comments / notes:\_\_\_\_

| Lab Designation:    | Spectrum |                              |
|---------------------|----------|------------------------------|
| Chain of Custody #: | 8225     | Shipper Tracking #: Fed - ex |

Reviewed by. 'server01'projects'3-0700-2'Kenilworth North/Feasibility Study/FSP Appendix 1 - Field Forms' Soil Sample Log- NPS- Kenilworth doe

| THE JOHNSON COMPANY, INC.   |
|-----------------------------|
| 100 State Street, Suite 600 |
| Montpelier, VT 05602        |

Phone: (802) 229-4600 Fax: (802) 229-5876 www.johnsonco.com

| Discrete Soil Sample Collection Record                     |                                   |
|------------------------------------------------------------|-----------------------------------|
| Soil Sample Location ID: K75 - TCO - 55 - 08 9.36          |                                   |
| Project Name: Kenilworth Park Landfill                     | Project #: <u>3-0700-11 (126)</u> |
| Site Location: Northeast Washington, DC                    | Date: 10/15/08                    |
| Weather Conditions: SUMM / Warm                            | Time on Site:                     |
| Sampler: [ <sup>1</sup>                                    | t                                 |
| 1. SAMPLE LOCATION AND COLLECTION METHODOLOGY INFORMATION: |                                   |
| Description of soil sampling location: Tall grass next     | to grown up P. Lot                |
| 1                                                          | -                                 |
| Sample collection method: Hand Aper                        |                                   |
| V                                                          |                                   |

2. SAMPLE INFORMATION:

Sample depth range (ft):\_\_\_\_

| Sample depth<br>(ft) | Sample type<br>(analyte(s)) | Field or fixed<br>lab analysis                             | Type of<br>container                                 | Collection time | Sample notes, observations, comments |
|----------------------|-----------------------------|------------------------------------------------------------|------------------------------------------------------|-----------------|--------------------------------------|
| 0-6"                 | pH, TOC                     | Fixed- Mitkem<br>Division,<br>Spectrum<br>Analytical, Inc. | 4 oz amber glass<br>jar with<br>Teflon®-lined<br>lid |                 | Reddish Sand<br>little grave         |

□ MS/MSD Samples collected from this location

0-6"

MS/MSD Sample Names:

Duplicate sample collected from this location Duplicate Name/Time: off Parking area Just General comments / notes:

| Lab Designation:    | Frecheum |                     |         |   |
|---------------------|----------|---------------------|---------|---|
| Chain of Custody #: |          | Shipper Tracking #: | Fed -ex | _ |

Reviewed by server01 projects/3-0700-2 Kenilworth North Feasibility Study FSP Appendix 1 - Field Forms Soil Sample Log- NPS- Kenilworth.doc

| THE JOHNSON COMPANY, INC.   |
|-----------------------------|
| 100 State Street, Suite 600 |
| Montpelier, VT 05602        |

| Discrete Soil Sample Colle | ction Record |
|----------------------------|--------------|
|----------------------------|--------------|

| Soil Sample Location ID: <u>KP3-J60-55</u> -09                    |                                   |
|-------------------------------------------------------------------|-----------------------------------|
| Project Name: Kenilworth Park Landfill                            | Project #: <u>3-0700-11 (126)</u> |
| Site Location: Northeast Washington, DC                           | Date: 10/15/08                    |
| Weather Conditions: Sunny / 14:10                                 | Time on Site: 7:00                |
| Sampler:                                                          | •                                 |
| •                                                                 |                                   |
| I. SAMPLE LOCATION AND COLLECTION METHODOLOGY INFORMATION:        |                                   |
| Description of soil sampling location: Tall grass off porking let |                                   |
| GPS coordinates of sampling location:Coordinate system:           |                                   |
| Sample collection method:                                         |                                   |
|                                                                   |                                   |

2. SAMPLE INFORMATION:

Sample depth range (ft): \_\_\_\_0-6"

| Sample depth<br>(ft) | Sample type<br>(analyte(s)) | Field or fixed<br>lab analysis                             | Type of<br>container                                 | Collection time | Sample notes, observations, comments |  |
|----------------------|-----------------------------|------------------------------------------------------------|------------------------------------------------------|-----------------|--------------------------------------|--|
| 0-6"                 | pH, TOC                     | Fixed- Mitkem<br>Division,<br>Spectrum<br>Analytical, Inc. | 4 oz amber glass<br>jar with<br>Teflon®-lined<br>lid | q:45            | compact brown<br>to real sound       |  |

□ MS/MSD Samples collected from this location

MS/MSD Sample Names:

Duplicate sample collected from this location

Duplicate Name/Time:

General comments / notes:\_\_

Speet Lab Designation:\_ Shipper Tracking #: Fed - 2x Chain of Custody #:\_

Reviewed by "server01 projects'3-0700-2" Kemilworth North Feasibility Study FSP Appendix 1 - Field Forms Soil Sample Log- NPS- Kemilworth doc

| THE JOHNSON COMPANY, INC.<br>100 State Street, Suite 600<br>Montpelier, VT 05602 | Phone: (802) 229-4600<br>Fax: (802) 229-5876<br>www.johnsonco.com |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Discrete Soil Sample Collection Record                                           |                                                                   |
| Soil Sample Location ID: <u>KPS - JCO</u> - 35 - 10  (:05                        |                                                                   |
| Project Name: Kenilworth Park Landfill                                           | Project #: 3-0700-11 (126)                                        |
| Site Location: Northeast Washington, DC                                          | Date: 13/15/09<br>Time on Site: 7:00                              |
| Weather Conditions: Sonny Wern<br>Sampler: TRO                                   | Time on Site: 7:00                                                |
| Sampler: [20                                                                     |                                                                   |
|                                                                                  |                                                                   |

#### 1. SAMPLE LOCATION AND COLLECTION METHODOLOGY INFORMATION:

| Description of soil sampling location: | on LF cap          |
|----------------------------------------|--------------------|
| GPS coordinates of sampling location:  | Coordinate system: |
| Sample collection method: 100 a-101    | ,                  |
| Sample depth range (ft): 0-6"          |                    |

#### 2. SAMPLE INFORMATION:

| Sample depth<br>(ft) | Sample type<br>(analyte(s)) | Field or fixed<br>lab analysis                             | Type of<br>container                                 | Collection time | Sample notes, observations, comments |
|----------------------|-----------------------------|------------------------------------------------------------|------------------------------------------------------|-----------------|--------------------------------------|
| 0-6"                 | pH, TOC                     | Fixed- Mitkem<br>Division,<br>Spectrum<br>Analytical, Inc. | 4 oz amber glass<br>jar with<br>Teflon®-lined<br>lid | (1:05           | Redaish<br>Sondy Svavel              |

G MS/MSD Samples collected from this location

MS/MSD Sample Names: \_

| Duplicate sample collected from this location | Duplicate Name/Time: <u>KPS-JCO-SS-10-DUP</u> /11:05 |   |
|-----------------------------------------------|------------------------------------------------------|---|
| General comments / notes:                     | /11:05                                               | - |
|                                               |                                                      |   |
| Lab Designation: Spectrum                     |                                                      |   |
| Lab Designation: <b>B115</b>                  | Shipper Tracking #: Fed . 21                         |   |

Reviewed by "server01" projects 3-0700-2" Kenilworth North Feasibility Study FSP Appendix 1 - Field Forms Soil Sample Log- NPS- Kenilworth doc

| THE JOHNSON COMPANY, INC.<br>100 State Street, Suite 600<br>Montpelier, VT 05602 |                                                                                             |                                                            |                                                      | Phone: (802) 229-4600<br>Fax: (802) 229-5876<br>www.johnsonco.com |                                      |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------|
| wiontpener, vi                                                                   | 03002                                                                                       | Discrete Soil S                                            | Sample Collection R                                  | ecord                                                             | www.jonasonco.com                    |
| Soil Sample Lo                                                                   | ation ID: KPS -                                                                             | <u>Jco-55-1</u>                                            | I                                                    |                                                                   |                                      |
| Project Name:                                                                    | Kenilworth Park I                                                                           | andfill                                                    |                                                      |                                                                   | Project #: 3-0700-11 (126)           |
| Site Location:                                                                   | Northeast Washin                                                                            | gton, DC                                                   |                                                      |                                                                   | Date: 0/15/08                        |
| Weather Conditi                                                                  | ons:                                                                                        | pasar 4 (                                                  | Cunny                                                |                                                                   | Time on Site:                        |
|                                                                                  | TRO                                                                                         | · · ·                                                      | <u> </u>                                             |                                                                   | •                                    |
| GPS coordinates<br>Sample collectio                                              | of sampling location <u>:</u><br>of sampling location<br>n method:<br>nge (ft): <u>0-6"</u> | ·                                                          | Coordina                                             | ite system:                                                       |                                      |
| 2. SAMPLE IN                                                                     | FORMATION:                                                                                  |                                                            |                                                      |                                                                   |                                      |
| Sample depth<br>(ft)                                                             | Sample type<br>(analyte(s))                                                                 | Field or fixed<br>lab analysis                             | Type of<br>container                                 | Collection time                                                   | Sample notes, observations, comments |
| 0-6"                                                                             | pH, TOC                                                                                     | Fixed- Mitkem<br>Division,<br>Spectrum<br>Analytical, Inc. | 4 oz amber glass<br>jar with<br>Teflon®-lined<br>lid | 11:15                                                             | Red soud & source                    |

□ MS/MSD Samples collected from this location

MS/MSD Sample Names: \_\_\_\_\_

Duplicate sample collected from this location

Duplicate Name/Time: \_\_\_\_

General comments / notes:

Lab Designation: \_\_\_\_\_\_\_\_ Chain of Custody #: \_\_\_\_\_\_\_ Fed-ex Chain of Custody #:\_\_ Shipper Tracking #:\_

Reviewed by 'server01' projects/3-0700-2'Kenilworth North Feasibility Study FSP Appendix 1 - Field Forms'Soil Sample Log- NPS- Kenilworth doc

## **APPENDIX 5**

# SOIL VAPOR (OCTOBER 2008 AND MARCH 2009),

# INDOOR AIR, AND INVESTIGATION-DERIVED WASTE LABORATORY REPORTS



A DIVISION OF SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

November 18, 2008

The Johnson Company, Inc. 100 State Street Montpelier, VT 05602 Attn: Mr. Daniel Smith

RE: Client Project: Kenilworth Park DC Lab Project #: G1915

Dear Mr. Smith:

Enclosed please find the data reports from Spectrum and Mitkem for the required analyses for the sample associated with the above referenced project. If you have any questions regarding this report, please call me.

We appreciate your business.

Sincerely

Edward A. Lawler Laboratory Operations Manager

Analytical Data Package for The Johnson Company, Inc.

Client Project: Kenilworth Park DC

Mitkem Project ID: G1915

November 18, 2008

Prepared For: The Johnson Company, Inc. 100 State Street Montpelier, VT 05602 Attn: Mr. Daniel Smith

Prepared By: Mitkem Laboratories 175 Metro Center Boulevard Warwick, RI 02886 (401) 732-3400

#### Client: The Johnson Company, Inc.

#### **Client Project: Kenilworth Park DC**

Lab Project: G1915

Date samples received: 10/20/08

#### **Project Narrative**

This data report includes the analysis results for nineteen (19) air samples and one (1) soil sample that were received from The Johnson Company, Inc. on October 20, 2008 and logged into Mitkem workorder G1915.

Sample analysis was performed by EPA Method 3C. Spike recoveries were within the QC limits for the laboratory control samples. Duplicate analyses were performed on samples KNP-JCO-IA-01 and KPS-JCO-SV-07-DUP. Replicate RPDs were within the QC limits.

One soil sample was analyzed for TCLP metals. Spike recoveries were within the QC limits for the laboratory control samples.

No other unusual observation was made for the analysis.

All pages in this report have been numbered consecutively, starting with the title page and ending with a page saying only "Last Page of Data Report".

I certify that this data package is in compliance, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Edward A. Lawler Operations Project Manager

Date: 10-Nov-08

Client: The Johnson Company, Inc. Client Sample ID: KNP-JCO-IA-01 Lab ID: G1915-01

Project:Kenilworth Park DCCollection Date:10/16/08 19:51

| Analyses                                        | Result Qual | RL Units | DF Date Analyzed   | Batch ID |
|-------------------------------------------------|-------------|----------|--------------------|----------|
| EPA 3C Determination Fixed Gases (Air) Modified | EPA 3C      |          |                    | 3C_AIR   |
| Methane                                         | ND          | 10 ppmv  | 1 10/30/2008 09:46 | 39680    |

Qualifiers:

ND - Not Detected at the Reporting Limit

- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Date: 10-Nov-08

Client: The Johnson Company, Inc. Client Sample ID: KPN-JCO-IA-01-DUP Lab ID: G1915-02

Project:Kenilworth Park DCCollection Date:10/16/08 19:51

| Analyses                                          | Result Qual | RL Units | DF Date Analyzed   | Batch ID |
|---------------------------------------------------|-------------|----------|--------------------|----------|
| EPA 3C Determination Fixed Gases (Air) Modified E | EPA 3C      |          |                    | 3C_AIR   |
| Methane                                           | ND          | 10 ppmv  | 1 10/30/2008 10:36 | 39680    |

Qualifiers:

s: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Date: 10-Nov-08

Client: The Johnson Company, Inc. Client Sample ID: KPN-JCO-SV-01 Lab ID: G1915-03

Project:Kenilworth Park DCCollection Date:10/17/08 09:10

| Analyses                                        | Result Qual | RL Units | DF Date Analyzed   | Batch ID |
|-------------------------------------------------|-------------|----------|--------------------|----------|
| EPA 3C Determination Fixed Gases (Air) Modified | EPA 3C      |          |                    | 3C_AIR   |
| Methane                                         | ND          | 10 ppmv  | 1 10/30/2008 11:02 | 39680    |

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit



Date: 10-Nov-08

Client: The Johnson Company, Inc. Client Sample ID: KPN-JCO-SV-02 Lab ID: G1915-04

Project:Kenilworth Park DCCollection Date:10/17/08 09:38

| Analyses                                          | Result Qual | RL Units | DF Date Analyzed   | Batch ID |
|---------------------------------------------------|-------------|----------|--------------------|----------|
| EPA 3C Determination Fixed Gases (Air) Modified E | EPA 3C      |          |                    | 3C_AIR   |
| Methane                                           | ND          | 10 ppmv  | 1 10/30/2008 11:27 | 39680    |

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Date: 10-Nov-08

Client: The Johnson Company, Inc. Client Sample ID: KPN-JCO-SV-03 Lab ID: G1915-05

Project:Kenilworth Park DCCollection Date:10/17/08 09:47

| Analyses                                               | Result Qual | RL Units | DF Date Analyzed   | Batch ID |
|--------------------------------------------------------|-------------|----------|--------------------|----------|
| EPA 3C Determination Fixed Gases (Air) Modified EPA 3C |             |          |                    | 3C_AIR   |
| Methane                                                | ND          | 10 ppmv  | 1 10/30/2008 11:52 | 39680    |

Qualifiers:

: ND - Not Detected at the Reporting Limit

- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank
- DF Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Date: 10-Nov-08

Client: The Johnson Company, Inc. Client Sample ID: KPN-JCO-SV-04 Lab ID: G1915-06

Project:Kenilworth Park DCCollection Date:10/17/08 10:15

| Analyses                                          | Result Qual | RL Units | DF Date Analyzed   | Batch ID |
|---------------------------------------------------|-------------|----------|--------------------|----------|
| EPA 3C Determination Fixed Gases (Air) Modified E |             |          | 3C_AIR             |          |
| Methane                                           | ND          | 10 ppmv  | 1 10/30/2008 12:17 | 39680    |

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Date: 10-Nov-08

Client: The Johnson Company, Inc. Client Sample ID: KPN-JCO-SV-05 Lab ID: G1915-07

Project: Kenilworth Park DC Collection Date: 10/17/08 10:23

| Analyses                                               | Result Qual | RL Units | DF Date Analyzed   | Batch ID |
|--------------------------------------------------------|-------------|----------|--------------------|----------|
| EPA 3C Determination Fixed Gases (Air) Modified EPA 3C |             |          |                    | 3C_AIR   |
| Methane                                                | ND          | 10 ppmv  | 1 10/30/2008 12:43 | 39680    |

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Date: 10-Nov-08

Client: The Johnson Company, Inc. Client Sample ID: KPN-JCO-SV-06 Lab ID: G1915-08

Project: Kenilworth Park DC Collection Date: 10/17/08 13:44

| Analyses                                               | Result Qual | RL Units | DF Date Analyzed   | Batch ID |
|--------------------------------------------------------|-------------|----------|--------------------|----------|
| EPA 3C Determination Fixed Gases (Air) Modified EPA 3C |             |          |                    | 3C_AIR   |
| Methane                                                | ND          | 10 ppmv  | 1 10/30/2008 13:08 | 39680    |

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Date: 10-Nov-08

Client: The Johnson Company, Inc. Client Sample ID: KPN-JCO-SV-07 Lab ID: G1915-09

Project:Kenilworth Park DCCollection Date:10/17/08 13:56

| Analyses                                               | Result Qual | RL Units | DF Date Analyzed   | Batch ID |
|--------------------------------------------------------|-------------|----------|--------------------|----------|
| EPA 3C Determination Fixed Gases (Air) Modified EPA 3C |             |          |                    | 3C_AIR   |
| Methane                                                | ND          | 10 ppmv  | 1 10/30/2008 13:33 | 39680    |

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Date: 10-Nov-08

Client: The Johnson Company, Inc. Client Sample ID: KPN-JCO-SV-07-DUP Lab ID: G1915-10

Project: Kenilworth Park DC Collection Date: 10/17/08 13:56

| Analyses                                               | Result Qual | RL Units | DF Date Analyzed   | Batch ID |
|--------------------------------------------------------|-------------|----------|--------------------|----------|
| EPA 3C Determination Fixed Gases (Air) Modified EPA 3C |             |          |                    | 3C_AIR   |
| Methane                                                | ND          | 10 ppmv  | 1 10/30/2008 13:58 | 39680    |

Qualifiers:

ND - Not Detected at the Reporting Limit

- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Date: 10-Nov-08

Client: The Johnson Company, Inc. Client Sample ID: KPS-JCO-SV-01 Lab ID: G1915-11

Project:Kenilworth Park DCCollection Date:10/17/08 13:04

| Analyses                                               | Result Qual | RL Units | DF Date Analyzed    | Batch ID |
|--------------------------------------------------------|-------------|----------|---------------------|----------|
| EPA 3C Determination Fixed Gases (Air) Modified EPA 3C |             |          |                     | 3C_AIR   |
| Methane                                                | 23000       | 100 ppmv | 10 11/07/2008 13:03 | 39887    |

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Date: 10-Nov-08

Client: The Johnson Company, Inc. Client Sample ID: KPS-JCO-SV-02 Lab ID: G1915-12

Project: Kenilworth Park DC Collection Date: 10/17/08 12:58

| Analyses                                       | Result Qual | RL Units | DF Date Analyzed   | Batch ID |
|------------------------------------------------|-------------|----------|--------------------|----------|
| EPA 3C Determination Fixed Gases (Air) Modifie | d EPA 3C    |          |                    | 3C_AIR   |
| Methane                                        | ND          | 10 ppmv  | 1 10/30/2008 14:49 | 39680    |

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Date: 10-Nov-08

Client: The Johnson Company, Inc. Client Sample ID: KPS-JCO-SV-03 Lab ID: G1915-13

Project: Kenilworth Park DC Collection Date: 10/17/08 12:57

| Analyses                                               | Result Qual | RL Units | DF Date Analyzed   | Batch ID |
|--------------------------------------------------------|-------------|----------|--------------------|----------|
| EPA 3C Determination Fixed Gases (Air) Modified EPA 3C |             |          |                    | 3C_AIR   |
| Methane                                                | 1400        | 10 ppmv  | 1 10/30/2008 15:14 | 39680    |

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Date: 10-Nov-08

Client: The Johnson Company, Inc. Client Sample ID: KPS-JCO-SV-06 Lab ID: G1915-14

Project:Kenilworth Park DCCollection Date:10/17/08 12:29

| Analyses                                       | Result Qual | RL Units  | DF Date Analyzed     | Batch ID |
|------------------------------------------------|-------------|-----------|----------------------|----------|
| EPA 3C Determination Fixed Gases (Air) Modifie |             |           | 3C_AIR               |          |
| Methane                                        | 140000      | 1000 ppmv | 100 11/07/2008 13:28 | 39887    |

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Date: 10-Nov-08

Client: The Johnson Company, Inc. Client Sample ID: KPS-JCO-SV-07 Lab ID: G1915-15

Project: Kenilworth Park DC Collection Date: 10/17/08 12:19

| Analyses                                        | Result Qual | RL Units | DF Date Analyzed    | Batch 1D |
|-------------------------------------------------|-------------|----------|---------------------|----------|
| EPA 3C Determination Fixed Gases (Air) Modified |             |          | 3C_AIR              |          |
| Methane                                         | 89000       | 500 ppmv | 50 11/07/2008 13:47 | 39887    |

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Date: 10-Nov-08

Client: The Johnson Company, Inc. Client Sample ID: KPS-JCO-SV-07-DUP Lab ID: G1915-16

Project: Kenilworth Park DC Collection Date: 10/17/08 12:19

| Analyses                                        | Result Qual | RL Units | DF Date Analyzed    | Batch ID |
|-------------------------------------------------|-------------|----------|---------------------|----------|
| EPA 3C Determination Fixed Gases (Air) Modified | EPA 3C      |          |                     | 3C_AIR   |
| Methane                                         | 91000       | 500 ppmv | 50 11/07/2008 14:07 | 39887    |

Qualifiers:

ND - Not Detected at the Reporting Limit

- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Date: 10-Nov-08

Client: The Johnson Company, Inc. Client Sample ID: KPS-JCO-SV-08 Lab ID: G1915-17

Project:Kenilworth Park DCCollection Date:10/17/08 12:14

| Analyses                                   | Result Qual   | RL Units | DF Date Analyzed   | Batch ID |
|--------------------------------------------|---------------|----------|--------------------|----------|
| EPA 3C Determination Fixed Gases (Air) Mod | dified EPA 3C |          |                    | 3C_AIR   |
| Methane                                    | ND            | 10 ppmv  | 1 10/31/2008 11:24 | 39721    |

| Quali | fiers: |
|-------|--------|
|-------|--------|

ND - Not Detected at the Reporting Limit

- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Date: 10-Nov-08

| Client:                  | The Johnson Company, Inc. |                  |                    |
|--------------------------|---------------------------|------------------|--------------------|
| <b>Client Sample ID:</b> | KPN-JCO-SV-08             | Project:         | Kenilworth Park DC |
| Lab ID:                  | G1915-19                  | Collection Date: | 10/17/08 14:23     |
|                          |                           |                  |                    |

| Analyses                                       | Result Qual | RL Units | DF Date Analyzed   | Batch ID |
|------------------------------------------------|-------------|----------|--------------------|----------|
| EPA 3C Determination Fixed Gases (Air) Modifie | ed EPA 3C   |          |                    | 3C_AIR   |
| Methane                                        | ND          | 10 ppmv  | 1 10/31/2008 11:59 | 39721    |

| Qualifiers: | ND - 1 |
|-------------|--------|
| Quanners:   | ND - 1 |

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Date: 10-Nov-08

Client:The Johnson Company, Inc.Client Sample ID:KPN-JCO-SV-09Lab ID:G1915-20

Project:Kenilworth Park DCCollection Date:10/17/08 14:59

| Analyses                                        | Result Qual | RL Units | DF Date Analyzed    | Batch ID |
|-------------------------------------------------|-------------|----------|---------------------|----------|
| EPA 3C Determination Fixed Gases (Air) Modified | EPA 3C      |          |                     | 3C_AIR   |
| Methane                                         | 37000       | 200 ppmv | 20 11/07/2008 14:33 | 39887    |

| Quali | fiers: |
|-------|--------|
|-------|--------|

ND - Not Detected at the Reporting Limit

- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank
- DF Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

| Mitkem L                | MIITKem Laboratories          |                                          |                        |       |                                                                  |                              |                         |              |                    | Date: 10-10-00-00                                   |       |
|-------------------------|-------------------------------|------------------------------------------|------------------------|-------|------------------------------------------------------------------|------------------------------|-------------------------|--------------|--------------------|-----------------------------------------------------|-------|
| CLIENT:                 | The Johnsor                   | The Johnson Company, Inc.                | a summer and the state | -     | ANALY                                                            | ANALYTICAL QC SUMMARY REPORT | SUMMAI                  | RY REPO      | RT                 | a manufacture of                                    | a     |
| Work Order:<br>Project: | : G1915<br>Kenilworth Park DC | Park DC                                  |                        |       | 3C_AIR<br>EPA 3C Determination Fixed Gases (Air) Modified EPA 3C | ination Fixed                | Gases (Air) M           | lodified EPA | 3C                 |                                                     |       |
| Sample ID: MB-39680     | B-39680                       | SampType: MBLK                           | K TestCode: 3C_AIR     | 2_AIR |                                                                  | Prep Date:                   | 10/30/2008              | Run ID:      | Run ID: V9_081030A |                                                     |       |
| Client ID: MB-39680     | B-39680                       | Batch ID: 39680                          | 0 Units: ppmv          | vmc   |                                                                  | Analysis Date: 10/30/2008    | 10/30/2008              | SeqNo:       | SeqNo: 913542      |                                                     |       |
| Analyte                 |                               |                                          | Result                 | PQL   | SPK value                                                        | SPK Ref Val                  | %REC LowLimit HighLimit |              | RPD Ref Val        | %RPD RPDLimit                                       | Qual  |
| Methane                 |                               |                                          | ND                     | 10    |                                                                  |                              |                         |              |                    |                                                     |       |
| Sample ID: MB-39721     | B-39721                       | SampType: MBL                            | K TestCode: 3C_AIR     |       |                                                                  | Prep Date:                   | 10/31/2008              | Run ID:      | Run ID: V9_081031A |                                                     |       |
| Client ID: MI           | MB-39721                      | Batch ID: 39721                          | 1 Units: ppmv          | vmc   |                                                                  | Analysis Date:               | 10/31/2008              | SeqNo:       | SeqNo: 913858      |                                                     |       |
| Analyte                 |                               |                                          | Result                 | Pal   | SPK value                                                        | SPK Ref Val                  | %REC LowLimit HighLimit | HighLimit    | RPD Ref Val        | %RPD RPDLimit                                       | Qual  |
| Methane                 |                               |                                          | UN                     | 10    |                                                                  |                              |                         |              |                    |                                                     |       |
| Sample ID: MB-39887     | B-39887                       | SampType: MBLI                           | K TestCode: 3C_AIR     |       |                                                                  | Prep Date:                   | 11/07/2008              | Run ID:      | Run ID: V9_081107A |                                                     |       |
| Client ID: MI           | MB-39887                      | Batch ID: 39881                          | 7 Units: ppmv          | vmc   |                                                                  | Analysis Date:               | 11/07/2008              | SeqNo:       | SeqNo: 920137      |                                                     | _     |
| Analyte                 |                               |                                          | Result                 | PQL   | SPK value                                                        | SPK Ref Val                  | %REC LowLimit HighLimit | HighLimit    | RPD Ref Val        | %RPD RPDLimit                                       | Qual  |
| Methane                 |                               |                                          | UN                     | 10    |                                                                  |                              |                         |              |                    |                                                     |       |
| Sample ID: LCS-39680    | CS-39680                      | SampType: LCS                            | TestCode: 3C_AIR       | 2_AIR |                                                                  | Prep Date:                   | 10/30/2008              | Run ID:      | Run ID: V9_081030A |                                                     |       |
| Client ID: LCS-39680    | CS-39680                      | Batch ID: 3968                           | 0 Units: ppmv          | omv   |                                                                  | Analysis Date:               | 10/30/2008              | SeqNo:       | SeqNo: 913543      |                                                     |       |
| Analyte                 |                               |                                          | Result F               | PQL   | SPK value                                                        | SPK Ref Val                  | %REC LowLimit HighLimit | HighLimit    | RPD Ref Val        | %RPD RPDLimit                                       | Qual  |
| Methane                 |                               |                                          | 453.2                  | 10    | 500.0                                                            | 0                            | 90.6 70                 | 130          | 0                  |                                                     |       |
| Sample ID: LCS-39721    | <b>SS-39721</b>               | SampType: LCS                            | TestCode: 3C_AIR       | C_AIR |                                                                  | Prep Date:                   | 10/31/2008              | Run ID:      | Run ID: V9_081031A |                                                     |       |
| Client ID: LCS-39721    | CS-39721                      | Batch ID: 3972                           | 1 Units: ppmv          | vma   |                                                                  | Analysis Date:               | 10/31/2008              | SeqNo:       | SeqNo: 913859      |                                                     |       |
| Analyte                 |                               |                                          | Result F               | PQL   | SPK value                                                        | SPK Ref Val                  | %REC LowLimit HighLimit | HighLimit    | RPD Ref Val        | %RPD RPDLimit                                       | Quał  |
| Methane                 |                               |                                          | 457.3                  | 10    | 500.0                                                            | 0                            | 91.5 70                 | 130          | 0                  |                                                     |       |
| Sample ID: LCS-39887    | CS-39887                      | SampType: LCS                            | TestCode: 3C_AIR       |       |                                                                  | Prep Date:                   | 11/07/2008              | Run ID:      | Run ID: V9_081107A |                                                     |       |
| Client ID: LCS-39887    | CS-39887                      | Batch ID: 3988                           | 17 Units: ppmv         | pmv   |                                                                  | Analysis Date:               | 11/07/2008              | SeqNo:       | SeqNo: 920138      |                                                     |       |
| Analyte                 |                               |                                          | Result F               | PQL   | SPK value                                                        | SPK Ref Val                  | %REC LowLimit HighLimit | HighLimit    | RPD Ref Val        | %RPD RPDLimit                                       | Qual  |
| Methane<br>88855        |                               |                                          | 438.6                  | 10    | 500.0                                                            | 0                            | 87.7                    | 130          | 0                  |                                                     |       |
|                         |                               |                                          |                        |       |                                                                  |                              |                         |              | Abda dataatad in   |                                                     | Diate |
| Qualifiers:             | Dataci 10N - CIN              | ND - Not Detected at the Reporting Limit | Limit                  |       | S - Spike Recovery outside accepted recovery limits              | e accepted recovery          | limits                  | п            | alyte detected in  | B - Analyte detected in the associated Method Blank | BIANK |

Date: 10-Nov-08

Mitkem Laboratories

5 > > plike kecovery outside accepted recove R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits

| CLIENT:<br>Work Order:<br>Project:                  | The Johnson Compan<br>G1915<br>Kenilworth Park DC | The Johnson Company, Inc.<br>G1915<br>Kenilworth Park DC |                    |                                        | ANALYTICAL QC SUMMARY REPORT<br>3C_AIR<br>EPA 3C Determination Fixed Gases (Air) Modified EPA 3C | ANALYTICAL QC SUMMARY REPORT<br>c<br>- Determination Fixed Gases (Air) Modified EPA 3C | SUMM.<br>Gases (Air)                             | ARY REP<br>Modified El | ORT<br>PA 3C                        |                                |      |
|-----------------------------------------------------|---------------------------------------------------|----------------------------------------------------------|--------------------|----------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------|------------------------|-------------------------------------|--------------------------------|------|
| Sample ID: G1915-01ADUP<br>Client ID: KNP-JCO-IA-01 | 5-01ADUP<br>JCO-IA-01                             | SampType: DUP<br>Batch ID: 39680                         | TestCode<br>Units: | TestCode: 3C_AIR<br>Units: ppmv        |                                                                                                  | Prep Date: 10/30/2008<br>Analysis Date: 10/30/2008                                     | Prep Date: 10/30/2008<br>alysis Date: 10/30/2008 | Run<br>Seqf            | Run ID: V9_081030A<br>SeqNo: 913545 |                                |      |
| Analyte                                             |                                                   |                                                          | Result             | Pal                                    | SPK value                                                                                        | SPK Ref Val %REC LowLimit HighLimit                                                    | %REC LowLi                                       | mit HighLimit          | RPD Ref Val                         | RPD Ref Val %RPD RPDLimit Qual | Qual |
| Methane                                             |                                                   |                                                          | QN                 | 10                                     | 0                                                                                                | 0                                                                                      | 0                                                | 0                      | 0                                   | 0 30                           |      |
| Sample ID: G1915-16A<br>Client ID: KPS-JCO-SV-07-DU | 5-16A<br>JCO-SV-07-DU                             | SampType: DUP<br>Batch ID: 39721                         | TestCode<br>Units: | TestCode: <b>3C_AIR</b><br>Units: ppmv |                                                                                                  | Prep Date: 10/31/2008<br>Analysis Date: 11/07/2008                                     | Prep Date: 10/31/2008<br>Ilysis Date: 11/07/2008 | Run<br>Seqh            | Run ID: V9_081107A<br>SeqNo: 920142 |                                |      |
| Analyte                                             |                                                   |                                                          | Result             | PQL                                    | SPK value                                                                                        | SPK Ref Val %REC LowLimit HighLimit                                                    | %REC LowLi                                       | mit HighLimit          | RPD Ref Val                         | RPD Ref Val %RPD RPDLimit Qual | Qual |
| Methane                                             |                                                   |                                                          | 90840              | 500                                    | 0                                                                                                | 0                                                                                      | 0                                                | 0                      | 88590                               | 2.52 30                        |      |

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

Qualifiers:

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Date: 03-Nov-08

Client: The Johnson Company, Inc.

Client Sample ID: COMPOSITEMPN-1

Lab ID: G1915-18

Project: Kenilworth Park DC Collection Date: 10/16/08 16:00

| Analyses                  | Result Qual | RL Units  | DF Date Analyzed   | Batch ID |
|---------------------------|-------------|-----------|--------------------|----------|
| SW846 6010 Metals by ICP  |             |           |                    | SW6010_W |
| Arsenic TCLP              | ND          | 20 µg/L   | 1 10/31/2008 11:30 | 39706    |
| Barium TCLP               | 950         | 200 µg/L  | 1 10/31/2008 11:30 | 39706    |
| Cadmium TCLP              | 17          | 5.0 µg/L  | 1 10/31/2008 11:30 | 39706    |
| Chromium TCLP             | ND          | 20 µg/L   | 1 10/31/2008 11:30 | 39706    |
| Lead TCLP                 | 260         | 10 µg/L   | 1 10/31/2008 11:30 | 39706    |
| Selenium TCLP             | ND          | 30 µg/L   | 1 10/31/2008 11:30 | 39706    |
| Silver TCLP               | ND          | 30 µg/L   | 1 10/31/2008 11:30 | 39706    |
| SW846 7470 Mercury by FIA |             |           |                    | SW7470   |
| Mercury TCLP              | ND          | 0.20 µg/L | 1 10/31/2008 10:56 | 39710    |

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

RL - Reporting Limit

| CLIENT:                      | The Johnson Company. Inc.                      | And the second s | and a contract of the second s | ANALY                                               | ANALYTICAL OC SUMMARY REPORT | MUS 2      | MARY                    | REPO   | NRT                     | and the second s | A VALUE OF BALANCE |
|------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------|------------|-------------------------|--------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Work Order:                  | G1915                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SW6010 W                                            |                              |            |                         |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Project:                     | Kenilworth Park DC                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SW846 6010 Metals by ICP                            | etals by ICP                 |            |                         |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Sample ID: MB-39674          | 674 SampType: MBLK                             | TestCode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TestCode: SW6010_W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     | Prep Date:                   | 10/30/2008 | 8                       | Run ID | Run ID: OPTIMA2_081031A | 1031A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| Client ID: MB-39674          | 674 Batch ID: 39706                            | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Units: µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     | Analysis Date:               | 10/31/2008 | 38                      | SeqNo  | SeqNo: 913874           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Analyte                      |                                                | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PQL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SPK value                                           | SPK Ref Val                  | %REC Lo    | %REC LowLimit HighLimit | Limit  | RPD Ref Val             | %RPD RPDLimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Qual               |
| Arsenic TCLP                 |                                                | DN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                  | 0                            | 0          | 0                       | 0      | 0                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Barium TCLP                  |                                                | UN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                   | 0                            | 0          | 0                       | 0      | 0                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Cadmium TCLP                 |                                                | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                   | 0                            | 0          | 0                       | 0      | 0                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Chromium TCLP                |                                                | UN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                   | 0                            | 0          | 0                       | 0      | 0                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Lead TCLP                    |                                                | ЦN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                   | 0                            | 0          | 0                       | 0      | 0                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Selenium TCLP<br>Silver TCLP |                                                | DN<br>UN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 0                                                 | 0 0                          | 0 0        | 0 0                     | 0 0    | 0 0                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Sample ID: MB-39706          | 706 SampType: MBLK                             | TestCode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TestCode: SW6010_W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     | Prep Date:                   | 10/30/2008 | 80                      | Run ID | Run ID: OPTIMA2_081031A | 1031A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| Client ID: MB-39706          | 706 Batch ID: 39706                            | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Units: µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     | Analysis Date:               | 10/31/2008 | 08                      | SeqNo  | SeqNo: 913875           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Analyte                      |                                                | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | POL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SPK value                                           | SPK Ref Val                  | %REC L     | %REC LowLimit HighLimit | Limit  | RPD Ref Val             | %RPD RPDLimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Qual               |
| Arcoic                       |                                                | CIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                              |            | P                       |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Barium                       |                                                | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                              |            |                         |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Cadmium                      |                                                | ΠN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                              |            |                         |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Chromium                     |                                                | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |                              |            |                         |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Lead                         |                                                | ΠN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |                              |            |                         |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Selenium<br>Silver           |                                                | CN CN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |                              |            |                         |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Sample ID: LCS-39706         | 9706 SampType: LCS                             | TestCode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TestCode: SW6010_W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     | Prep Date:                   | 10/30/2008 | 08                      | Run ID | Run ID: OPTIMA2_081031A | 1031A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| Client ID: LCS-39706         | 9706 Batch ID: 39706                           | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Units: µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     | Analysis Date:               | 10/31/2008 | 08                      | SeqNo  | SeqNo: 913876           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Analyte                      |                                                | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SPK value                                           | SPK Ref Val                  | %REC L     | %REC LowLimit HighLimit | JLimit | RPD Ref Val             | %RPD RPDLimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Qual               |
| Arsenic                      |                                                | 500.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 455.0                                               | 0                            | 110        |                         | 120    | 0                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Barium                       |                                                | 9667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9100                                                | 0                            | 106        |                         | 120    | 0                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Cadmium                      |                                                | 238.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 227.0                                               | 0 0                          | 105        | 80                      | 120    | 0 (                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Unromium<br>Lead             |                                                | 485.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 910.U                                               | ə c                          | 201<br>107 |                         | 120    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Selenium                     |                                                | 492.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 455.0                                               | 0                            | 108        |                         | 120    | 0                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Silver                       |                                                | 1305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1130                                                | 0                            | 115        | 80                      | 120    | 0                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| 0025                         |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                              |            |                         |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Qualifiers:                  | ND - Not Detected at the Reporting Limit       | nit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S - Spike Recovery outside accepted recovery limits | le accepted recovery         | limits     |                         | B - A  | nalyte detected in      | B - Analyte detected in the associated Method Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d Blan             |
|                              | 1 - Analyte detected below guantitation limits | limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R - RPD outside accented recovery limits            | recovery limits              |            |                         |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|                              | manning a star same affirmer of                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | widwan anienna a IN                                 |                              |            |                         |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |

Date: 03-Nov-08

Mitkem Laboratories

| CLIENT:                                    | The John          | The Johnson Company, Inc.         |                                 |      | ANALY                               | ANALYTICAL QC SUMMARY REPORT                       | <b>SUM</b>               | MARY R                  | <b>REPOR</b>                   | L                                      |               |      |
|--------------------------------------------|-------------------|-----------------------------------|---------------------------------|------|-------------------------------------|----------------------------------------------------|--------------------------|-------------------------|--------------------------------|----------------------------------------|---------------|------|
| Work Order:<br>Project:                    | G1915<br>Kenilwor | G1915<br>Kenilworth Park DC       |                                 | 5 5  | SW7470<br>SW846 7470 Mercury by FIA | ercury by FIA                                      |                          |                         |                                |                                        |               |      |
| Sample ID: MB-39674<br>Client ID: MB-39574 | 19674<br>19674    | SampType: MBLK<br>Batch ID: 39710 | TestCode: SW7470<br>Units: µg/L |      |                                     | Prep Date: 10/30/2008<br>Analysis Date: 10/31/2008 | 10/30/2008               | 8 80                    | Run ID: FIMS1<br>SeqNo: 913926 | Run ID: FIMS1_081031A<br>SeqNo: 913926 | e I           |      |
| Analyte                                    |                   |                                   | Result PQL                      | _    | SPK value                           | SPK Ref Val                                        | %REC LO                  | %REC LowLimit HighLimit |                                | RPD Ref Val                            | %RPD RPDLimit | Qual |
| Mercury TCLP                               |                   |                                   | ND                              | 0.20 | 0                                   | 0                                                  | 0                        | 0                       |                                | 0                                      |               |      |
| Sample ID: MB-39710<br>Client ID: MB-39710 | 39710<br>19710    | SampType: MBLK<br>Batch ID: 39710 | TestCode: SW7470<br>Units: µg/L | .470 |                                     | Prep Date:<br>Analysis Date:                       | 10/30/2008<br>10/31/2008 | 80 80                   | Run ID: FIMS1<br>SeqNo: 913924 | Run ID: FIMS1_081031A<br>SeqNo: 913924 | IA.           |      |
| Analyte                                    |                   |                                   | Result PQL                      |      | SPK value                           | SPK Ref Val                                        | %REC L                   | %REC LowLimit HighLimit |                                | RPD Ref Val                            | %RPD RPDLimit | Qual |
| Mercury                                    |                   |                                   | ND                              | 0.20 |                                     |                                                    |                          |                         |                                |                                        |               |      |
|                                            | 39710             | SampType: LCS                     | TestCode: SW7470                | 470  |                                     | Prep Date:                                         |                          | 80                      | Run ID: FI                     | Run ID: FIMS1_081031A                  | 14            |      |
| ö                                          | LCS-39710         | Batch ID: 39710                   | Inits: µ                        |      |                                     | Analysis Date:                                     |                          | 08                      | eqNo:                          | 3925                                   |               |      |
| Analyte                                    |                   |                                   | Result PQL                      | Ļ    | SPK value                           | SPK Ref Val                                        | %REC L                   | %REC LowLimit HighLimit |                                | RPD Ref Val                            | %RPD RPDLimit | Qual |
|                                            |                   |                                   |                                 |      |                                     |                                                    |                          |                         |                                |                                        |               |      |
|                                            |                   |                                   |                                 |      |                                     |                                                    |                          |                         |                                |                                        |               |      |
|                                            |                   |                                   |                                 |      |                                     |                                                    |                          |                         |                                |                                        |               |      |
| 88                                         |                   |                                   |                                 |      |                                     |                                                    |                          |                         |                                |                                        |               |      |

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

Qualifiers:

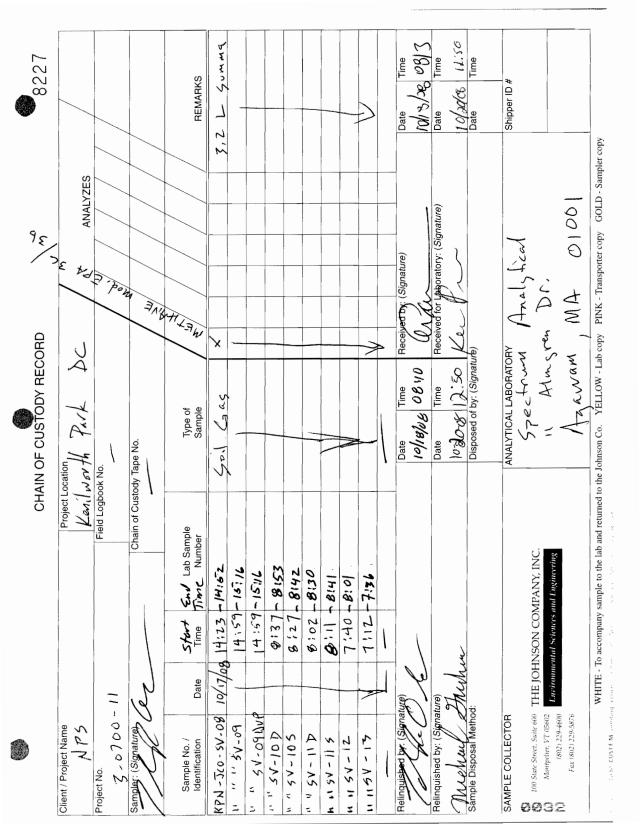
S - Spike Recovery outside accepted recovery limits
 R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

| Client ID: JOH<br>Project: Keni<br>Location:<br>Comments: N/A | Client ID: JOHNSON<br>Project: Kenilworth Park DC<br>Location:<br>omments: N/A |                             |             | Case:<br>SDG:<br>PO: | ase:<br>DG:<br>PO: 3-0700-11 | HC Due: 11/03/08<br>Fax Due: | Report Level: LEVEL 2<br>EDD: ENVIRO_16 |
|---------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------|-------------|----------------------|------------------------------|------------------------------|-----------------------------------------|
| Sample ID                                                     | HS Client Sample ID                                                            | Collection Date             | Date Recv'd | Matrix               | Test Code                    | Lab Test Comments            | Hold MS SEL Storage                     |
| G1915-01A                                                     | KNP-JCO-IA-01                                                                  | 10/16/2008 19:51 10/20/2008 | 10/20/2008  | Air                  | 3C_AIR                       | Methane only                 | VOA                                     |
| G1915-02A                                                     | KPN-JCO-IA-01-DUP                                                              | 10/16/2008 19:51 10/20/2008 | 10/20/2008  | Air                  | 3C_AIR                       | Methane only                 | NOA                                     |
| G1915-03A                                                     | KPN-JCO-SV-01                                                                  | 10/17/2008 9:10             | 10/20/2008  | Air                  | 3C_AIR                       | Methane only                 | VOA                                     |
| G1915-04A                                                     | KPN-JCO-SV-02                                                                  | 10/17/2008 9:38             | 10/20/2008  | Air                  | 3C_AIR                       | Methane only                 | VOA                                     |
| G1915-05A                                                     | KPN-JCO-SV-03                                                                  | 10/17/2008 9:47             | 10/20/2008  | Air                  | 3C_AIR                       | Methane only                 | VOA                                     |
| G1915-06A                                                     | KPN-JCO-SV-04                                                                  | 10/17/2008 10:15 10/20/2008 | 10/20/2008  | Air                  | 3C_AIR                       | Methane only                 | VOA                                     |
| G1915-07A                                                     | KPN-JCO-SV-05                                                                  | 10/17/2008 10:23            | 10/20/2008  | Air                  | 3C_AIR                       | Methane only                 | C D VOA                                 |
| G1915-08A                                                     | KPN-JCO-SV-06                                                                  | 10/17/2008 13:44 10/20/2008 | 10/20/2008  | Air                  | 3C_AIR                       | Methane only                 |                                         |
| G1915-09A                                                     | KPN-JCO-SV-07                                                                  | 10/17/2008 13:56 10/20/2008 | 10/20/2008  | Air                  | 3C_AIR                       | Methane only                 | VOA                                     |
| G1915-10A                                                     | KPN-JCO-SV-07-DUP                                                              | 10/17/2008 13:56 10/20/2008 | 10/20/2008  | Air                  | 3C_AIR                       | Methane only                 | VOV N I                                 |
| Mient Rep:                                                    | Mient Rep: Edward A Lawler                                                     |                             |             |                      |                              |                              | Page 1 of 3                             |

25/Oct/08 10:57

**Mitkem Laboratories** 


WorkOrder: G1915

| Mitkem                                           | Mitkem Laboratories                                                             |                             | 7           | :7/0ct/              | 27/Oct/08 8:40               | W                            | WorkOrder: G1915                        |
|--------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------|-------------|----------------------|------------------------------|------------------------------|-----------------------------------------|
| Client ID:<br>Project:<br>Location:<br>Comments: | Client ID: JOHNSON<br>Project: Kenilworth Park DC<br>Location:<br>Comments: N/A |                             |             | Case:<br>SDG:<br>PO: | áse:<br>DG:<br>PO: 3-0700-11 | HC Due: 11/03/08<br>Fax Due: | Report Level: LEVEL 2<br>EDD: ENVIRO_16 |
| Sample ID                                        | HS Client Sample ID                                                             | <b>Collection Date</b>      | Date Recv'd | Matrix               | Test Code                    | Lab Test Comments            | Hold MS SEL Storage                     |
| G1915-11A                                        | KPS-JCO-SV-01                                                                   | 10/17/2008 13:04 10/20/2008 | 10/20/2008  | Air                  | 3C_AIR                       | Methane only                 | VOV                                     |
| G1915-12A                                        | KPS-JCO-SV-02                                                                   | 10/17/2008 12:58 10/20/2008 | 10/20/2008  | Air                  | 3C_AIR                       | Methane only                 | VON                                     |
| G1915-13A                                        | KPS-JCO-SV-03                                                                   | 10/17/2008 12:57 10/20/2008 | 10/20/2008  | Air                  | 3C_AIR                       | Methane only                 | VOA                                     |
| G1915-14A                                        | KPS-JCO-SV-06                                                                   | 10/17/2008 12:29 10/20/2008 | 10/20/2008  | Air                  | 3C_AIR                       | Methane only                 | NOA                                     |
| G1915-15A                                        | KPS-JC()-SV-07                                                                  | 10/17/2008 12:19 10/20/2008 | 10/20/2008  | Air                  | 3C_AIR                       | Methane only                 | VOV                                     |
| G1915-16A                                        | KPS-JCO-SV-07-DUP                                                               | 10/17/2008 12:19 10/20/2008 | 10/20/2008  | Air                  | 3C_AIR                       | Methane only                 | VOA                                     |
| G1915-17A                                        | KPS-JCO-SV-08                                                                   | 10/17/2008 12:14 10/20/2008 | 10/20/2008  | Air                  | 3C_AIR                       | Methane only                 | NOA                                     |
| G1915-18A                                        | COMPOSITEMPN-1                                                                  | 10/16/2008 16:00 10/20/2008 | 10/20/2008  | Soil                 | SW6010_W<br>SW7470           | TCLP_METALS<br>TCLP_METALS   | → → → → → → → → → → → → → → → → → → →   |
| 6 <sup>01915-19A</sup><br>60<br>1911 Rep:<br>10  | G1915-19A KPN-JCO-SV-08<br>Definet Rep: Edward A Lawler                         | 10/17/2008 14:23 10/20/2008 | 10/20/2008  | Air                  | 3C_AIR                       | Methane only                 | Page 2 of 3                             |

| WorkOrder: G1915           | Report Level: LEVEL 2<br>E.D.D: ENVIRO_16                                       | Hold MS SEL Storage             | VON D                                  |  |  |
|----------------------------|---------------------------------------------------------------------------------|---------------------------------|----------------------------------------|--|--|
| W                          | HC Due: 11/03/08<br>Fax Due:                                                    | Lab Test Comments               | Methane only                           |  |  |
| 27/Oct/08 8:40             | Case:<br>SDG:<br>PO: 3-0700-11                                                  | te Date Recv'd Matrix Test Code | 10/17/2008 14:59 10/20/2008 Air 3C_AIR |  |  |
| tories                     | on<br>th Park DC                                                                | mple ID Collection Date         |                                        |  |  |
| <b>Mitkem Laboratories</b> | Client ID: JOHNSON<br>Project: Kenilworth Park DC<br>Location:<br>Comments: N/A | ample ID HS Client Sample ID    | 1915-20A KPN-JCO-SV-09                 |  |  |

| 8226                    |                                        | J                          |                           | REMARKS                        | (OL SJUMA           | 11 11                 | 3.24 SUMMA          |               |                |              |                |             |                 |              | Date Time                 | 10/18/02/01   | Date Time                     | 10/2000 12:50    | Date                        | Shipper ID #                    | Jean nap                                              |                                            |                  | pler copy                                                              |
|-------------------------|----------------------------------------|----------------------------|---------------------------|--------------------------------|---------------------|-----------------------|---------------------|---------------|----------------|--------------|----------------|-------------|-----------------|--------------|---------------------------|---------------|-------------------------------|------------------|-----------------------------|---------------------------------|-------------------------------------------------------|--------------------------------------------|------------------|------------------------------------------------------------------------|
| 7ESS                    | IN ANALYZES                            | ipo h                      |                           |                                |                     |                       |                     |               |                |              |                |             |                 |              | Received by: (Signature)  | 1/hum         | d for Laboratory:.(Signature) |                  |                             | 24 1 5 cc 1                     |                                                       |                                            | A 01001          | YELLOW - Lab copy PINK - Transporter copy GOLD - Sampler copy          |
| CHAIN OF CUSTODY RECORD | Project Location<br>Keni/Worth Park DC | ook No.                    | Chain of Custody Tape No. | Type of Sample                 | INDOOR ANZ X        |                       | Soil Unror/GAS X    | ×.            | X              | 2            | ×              | X           | X               |              |                           | 0180 80/allon | Date Time Received            | 10-2005/12150 Le | Disposed of by: (Signature) | ANALYTICAL LABORATORY ANALY 100 | Spection                                              | 11 41m5ren                                 | Agawam, MA 01001 | , r                                                                    |
| Ċ                       | Project                                | Fiel                       |                           | Date Time Time Number          | 10/16/08 19:51-7:25 | 11 11 11 11 125       | 10/11/02 dilo- 3:22 | 9:38-9:53     | 9:47-10:09     | 10:15-10:40  | 10:23-10:47    | 20:41+44:51 | V 13:56+14:15   | 13:20 - HHS  | And a second second       |               | lre)<br>-                     | rohu.            |                             |                                 | 100 State Street, Swite 600 THE JOHNSON COMPANY, INC. | Environmental Sciences and Engineering     |                  | WHITE - To accompany sample to the lab and returned to the Johnson Co. |
| ٢                       | Client / Project Name $NP5$            | Project No.<br>7 , 0100-11 | Sampler: (Signature)      | Sample No. /<br>Identification | KPN-TCO-TA-01       | 111 11 11 11 11 11 11 | KPN-JC0-54-01       | ···· ·· 54-02 | 11 11 11 51-03 | M . 11 5V.04 | 11 11 11 20-05 | 111151-06   | L0 - NS 11 11.1 | mursv-07 DUP | Reliperdened by: (Signatu | and a         | Relinquished by: (Signature)  | Mrehul A         | Sample Disposal Method:     | SAMPLE COLLECTOR                | 100 State Street, Suite 600                           | (1) Mantpeller, VT 05602<br>(302) 229-4600 | Fax              | IHM                                                                    |

| <b>8</b> 228            | ZES                        |                             |                           | REMARKS                                                                             | 3,2L suman             |              |             |             |             |              | Ä             | + | 302 Amber Jar           | Date Date Time               | Date Time                            | 10/20105/250  | Date Time                | Shipper ID #          | 1.1.1 25                                                                                                           | (00)                                       | D-Sampler copy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------|----------------------------|-----------------------------|---------------------------|-------------------------------------------------------------------------------------|------------------------|--------------|-------------|-------------|-------------|--------------|---------------|---|-------------------------|------------------------------|--------------------------------------|---------------|--------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ORD                     |                            | od NET                      | 20 4                      | the Ford                                                                            | X                      | -X           | X           | ×           |             | X            | X             |   | ×                       | Received tyy: (Signature)    | Received for Laboratory: (Signature) | Ken Ar-       | ire) V                   |                       | un mun lieu                                                                                                        | Arewan MA 0(001                            | b copy PINK - Transporter copy GOLD $7, L'$ ,, $1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CHAIN OF CUSTODY RECORD | Project Location A Park DC | Field Logbook No.           | Chain of Custody Tape No. | Type of<br>Sample                                                                   | Seil GAS               |              |             |             |             |              | >             |   | 50%                     | Date<br>10/19/08 &:10        | Date Time                            | 10-Jo & 17:50 | Disposed of by: (Signatu | ANALYTICAL LABORATORY | SPECTY COM                                                                                                         | A a                                        | ied to the Johnson Co. YELLOW - Lat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| U                       | Projec                     | Field Lo                    | Chain of C                | Stark T         Time         Lab Sample           Time         510 f         Number | 12:24 13:24            | 12:58 -13:26 | 12:57-13:19 | 87:11-62:21 | 68:21 61121 | 12:19 12:39  | 12:14 12:35   |   | 08 16:00                |                              |                                      | 2             |                          |                       | DHNSON COMPANY, INC.                                                                                               | c .                                        | WHITE - To accompany sample to the lab and returned to the Johnson Co. YELLOW - Lab copy PINK - Transporter copy GOLD - Sampler copy $\mathcal{R}$ , $\mathcal{L}$ , |
| Ø                       | Client / Project Name      | Project No.<br>3 - 0706 - 1 | Sampler: (Signature)      | Sample No. /<br>Identification Date                                                 | KP5-Jco-54-01 10/17/08 |              | 1 1 54-03   | " " 5V-06   | 10-15       | " " SV-070UP | N 80-15 11 11 |   | Company 1111-1 10/16/08 | Relinquished by: (Signature) | Relinquished by: Signature)          | Muchal Mahu   | Sample Disposal Method:  | SAMPLE COLLECTOR      | <ul> <li>100 State Street. Suite 600 THE JOHNSON COMPANY, INC.</li> <li>Montpeler, VT 05602 Institution</li> </ul> | Julia (802) 229-4600<br>Fax (802) 229-587e | WHTE<br>We contained the state of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



### MITKEM LABORATORIES Sample Condition Form

Page <u></u>of (

| Received By: CAN                           | Reviewed By                | : Ş      | A 102      | ran   | Date             | 6elois | MITK                                             | EM Wor   | korder                         | #: Q19         | 115              |
|--------------------------------------------|----------------------------|----------|------------|-------|------------------|--------|--------------------------------------------------|----------|--------------------------------|----------------|------------------|
| Client Project: Kenilue                    | orth-LF                    |          |            |       | Client: JoHnSon  |        |                                                  |          |                                | Soil Headspace |                  |
|                                            |                            |          |            |       |                  | Pres   | Preservation (pH) VOA                            |          |                                |                | or Air Bubbles   |
|                                            |                            |          | o Samp     | le ID | HNO <sub>3</sub> | H₂SO₄  | HCI                                              | NaOH     | H <sub>3</sub> PO <sub>4</sub> | Matrix         | <u>&gt; 1/4"</u> |
| 1) Cooler Sealed Yes (                     | No                         | 68       | 15         | 01    |                  |        |                                                  |          |                                | <u>A</u>       |                  |
|                                            |                            |          |            | 02    |                  |        |                                                  |          |                                |                |                  |
| 2) Custody Seal(s)                         | Present Absent             |          |            | 03    |                  |        |                                                  |          |                                |                |                  |
|                                            | Coolers / Bottles          |          |            | 04    |                  | _      |                                                  |          |                                |                |                  |
|                                            | Intact 7 Broken            |          |            | 05    |                  |        |                                                  |          |                                | _              |                  |
|                                            | . [ ]                      | ļ        |            | 66    |                  |        |                                                  |          |                                |                |                  |
| <ol> <li>Custody Seal Number(s)</li> </ol> | <u></u>                    |          |            | 07    |                  |        |                                                  |          |                                |                |                  |
|                                            | _/                         |          |            | 08    |                  |        |                                                  |          |                                |                |                  |
|                                            | _/                         |          |            | 09    |                  |        |                                                  |          |                                |                |                  |
|                                            |                            |          |            | 10    |                  |        |                                                  |          |                                |                |                  |
|                                            |                            | -+       |            | 11    |                  |        |                                                  | _        |                                |                |                  |
| 4) Chain-of-Custody                        | Present / Absent           | $\vdash$ |            | 12    |                  |        |                                                  |          |                                |                |                  |
|                                            |                            | $\vdash$ |            | 13    |                  |        |                                                  |          |                                |                |                  |
| 5) Cooler Temperature                      |                            |          |            | 14    |                  |        |                                                  |          |                                |                |                  |
| Coolant Condition                          |                            |          |            | 15    |                  |        |                                                  |          |                                |                |                  |
|                                            |                            | $\vdash$ |            | 16    |                  |        |                                                  |          |                                |                |                  |
| 6) Airbill(s)                              | Present / Absent           |          |            | 17    |                  |        |                                                  |          |                                |                |                  |
| Airbill Number(s)                          | Cuny                       | +        |            | 18    |                  |        |                                                  |          |                                |                |                  |
|                                            |                            | 619      | 215        | 19    |                  |        |                                                  |          | -                              | <u>U</u>       |                  |
|                                            |                            | Gr       | 115        | 20    |                  |        |                                                  |          |                                | 17             | $\rightarrow$    |
|                                            | /                          |          | ι <u>.</u> |       |                  |        |                                                  |          |                                |                |                  |
| 7) Sampla Pottlag                          | Intaco Broken/Leaking      |          |            |       |                  |        |                                                  |          |                                |                |                  |
| 7) Sample Bottles                          | Unitacy Broken/Leaking     |          |            |       |                  |        |                                                  | /        |                                |                |                  |
| 8) Date Received                           | 10/3/2                     |          |            |       |                  |        |                                                  |          |                                |                |                  |
| b) Date Received                           | 70700                      |          |            |       |                  | AUS    | Ę                                                |          |                                |                |                  |
| 9) Time Received                           | 10 / 30/08/<br>18: 50      |          |            |       |                  | A0 35  | VOA                                              | Matrix I | Kev:                           |                |                  |
|                                            |                            |          |            |       | $\nearrow$       | 10     | VOA Matrix Key:<br>US = Unpreserved Soil A = Air |          |                                | A = Air        |                  |
| Preservative Name/Lot No:                  |                            |          |            |       |                  |        |                                                  | Unprese  |                                |                | H = HCI          |
|                                            |                            |          |            |       |                  |        | M= Me                                            |          |                                |                | E = Encore       |
|                                            |                            | 7        |            |       |                  |        |                                                  | aHSO₄    |                                |                | F = Freeze       |
|                                            |                            |          |            |       |                  |        |                                                  |          |                                |                |                  |
|                                            |                            |          |            |       |                  |        |                                                  |          |                                |                |                  |
| See Sample Conc                            | lition Notification/Correc | tive A   | ction F    | orm   | yes / 6          | ð      | Rad O                                            | K yes/   | 00                             |                |                  |
|                                            |                            |          |            |       |                  |        | Ttau U                                           | it yes/  | 10                             |                |                  |

Last Page of Data Report



A DIVISION OF SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

November 18, 2008

The Johnson Company, Inc. 100 State Street Montpelier, VT 05602 Attn: Mr. Daniel Smith

#### RE: Client Project: Kenilworth Park DC Lab Project #: G1916

Dear Mr. Smith:

Enclosed please find the data reports from Spectrum and Mitkem for the required analyses for the sample associated with the above referenced project. If you have any questions regarding this report, please call me.

We appreciate your business.

Sincerel

Edward A. Lawler Laboratory Operations Manager

Analytical Data Package for The Johnson Company, Inc.

Client Project: Kenilworth Park DC

Mitkem Project ID: G1916

November 18, 2008

Prepared For: The Johnson Company, Inc. 100 State Street Montpelier, VT 05602 Attn: Mr. Daniel Smith

Prepared By: Mitkem Laboratories 175 Metro Center Boulevard Warwick, RI 02886 (401) 732-3400

#### Client: The Johnson Company, Inc.

#### **Client Project: Kenilworth Park DC**

#### Lab Project: G1916

Date samples received: 10/20/08

#### **Project Narrative**

This data report includes the analysis results for seven (7) samples that were received from The Johnson Company, Inc. on October 20, 2008 and logged into Mitkem workorder G1916.

Sample analysis was performed by EPA Method 3C. Spike recoveries were within the QC limits for the laboratory control samples. Duplicate analysis was performed on sample KPN-JCO-SV-09-DUP. Replicate RPDs were within the QC limits.

No other unusual observation was made for the analysis.

All pages in this report have been numbered consecutively, starting with the title page and ending with a page saying only "Last Page of Data Report".

I certify that this data package is in compliance, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Edward A. Lawler Operations Project Manager 11/18/08

Date: 13-Nov-08

 Client:
 The Johnson Company, Inc.

 Client Sample ID:
 KPN-JCO-SV-09-DUP

 Lab ID:
 G1916-01
 Col

Project:Kenilworth Park DCCollection Date:10/17/08 14:59

| Analyses                                       | Result Qual | RL Units | DF Date Analyzed    | Batch ID |
|------------------------------------------------|-------------|----------|---------------------|----------|
| EPA 3C Determination Fixed Gases (Air) Modifie | d EPA 3C    |          |                     | 3C_AIR   |
| Methane                                        | 39000       | 200 ppmv | 20 11/07/2008 14:54 | 39887    |

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Date: 03-Nov-08

Client:The Johnson Company, Inc.Client Sample ID:KPN-JCO-SV-10DLab ID:G1916-02CompanyCompany

Project:Kenilworth Park DCCollection Date:10/17/08 08:37

| Analyses                                          | Result Qual | RL Units | DF Date Analyzed   | Batch ID |
|---------------------------------------------------|-------------|----------|--------------------|----------|
| EPA 3C Determination Fixed Gases (Air) Modified E | PA 3C       |          |                    | 3C_AIR   |
| Methane                                           | 87          | 10 ppmv  | 1 10/29/2008 13:26 | 39661    |

Qualifiers:

s: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Date: 03-Nov-08

Client:The Johnson Company, Inc.Client Sample ID:KPN-JCO-SV-10SLab ID:G1916-03

Project:Kenilworth Park DCCollection Date:10/17/08 08:27

| Analyses                                            | Result Qual | RL Units | DF Date Analyzed   | Batch ID |
|-----------------------------------------------------|-------------|----------|--------------------|----------|
| EPA 3C Determination Fixed Gases (Air) Modified EPA | A 3C        |          |                    | 3C_AIR   |
| Methane                                             | ND          | 10 ppmv  | 1 10/29/2008 13:46 | 39661    |

Qualifiers:

ND - Not Detected at the Reporting Limit

- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

**Date:** 03-Nov-08

Client: The Johnson Company, Inc. Client Sample ID: KPN-JCO-SV-11D Lab ID: G1916-04

Project:Kenilworth Park DCCollection Date:10/17/08 08:02

| Analyses                                          | Result Qual | RL Units | DF Date Analyzed   | Batch ID |
|---------------------------------------------------|-------------|----------|--------------------|----------|
| EPA 3C Determination Fixed Gases (Air) Modified E | PA 3C       |          |                    | 3C_AIR   |
| Methane                                           | ND          | 10 ppmv  | 1 10/29/2008 14:06 | 39661    |

Qualifiers:

ND - Not Detected at the Reporting Limit

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Date: 03-Nov-08

Client: The Johnson Company, Inc. Client Sample ID: KPN-JCO-SV-11S Lab ID: G1916-05

Project:Kenilworth Park DCCollection Date:10/17/08 08:11

| Analyses                                           | Result Qual | RL Units | DF Date Analyzed   | Batch ID |
|----------------------------------------------------|-------------|----------|--------------------|----------|
| EPA 3C Determination Fixed Gases (Air) Modified EP | A 3C        |          |                    | 3C_AIR   |
| Methane                                            | ND          | 10 ppmv  | 1 10/29/2008 14:26 | 39661    |

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Date: 03-Nov-08

Client:The Johnson Company, Inc.Client Sample ID:KPN-JCO-SV-12ProjeLab ID:G1916-06Collection Date

Project:Kenilworth Park DCCollection Date:10/17/08 07:40

| Analyses                                  | Result Qual   | RL Units | DF Date Analyzed   | Batch ID |
|-------------------------------------------|---------------|----------|--------------------|----------|
| EPA 3C Determination Fixed Gases (Air) Mo | dified EPA 3C |          |                    | 3C_AIR   |
| Methane                                   | 870           | 10 ppmv  | 1 10/29/2008 14:46 | 39661    |

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Date: 03-Nov-08

Client: The Johnson Company, Inc. Client Sample ID: KPN-JCO-SV-13 Lab ID: G1916-07

Project:Kenilworth Park DCCollection Date:10/17/08 07:12

| Analyses                                        | Result Qual | RL Units | DF Date Analyzed   | Batch ID |
|-------------------------------------------------|-------------|----------|--------------------|----------|
| EPA 3C Determination Fixed Gases (Air) Modified | EPA 3C      |          |                    | 3C_AIR   |
| Methane                                         | ND          | 10 ppmv  | 1 10/29/2008 15:06 | 39661    |

Qualifiers:

s: ND - Not Detected at the Reporting Limit

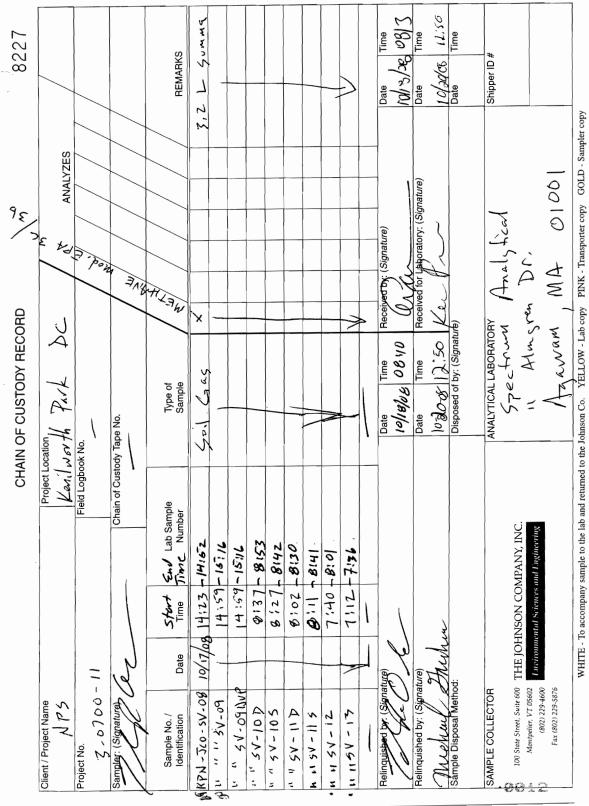
- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

| Mitkem Laboratories                                                | oratories                                         |                                                          |                                                           |                                    |                                                                                                                                           |                                                                                                  |                                                       | Date: 13-Nov-08 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CLIENT:<br>Work Order:<br>Project:                                 | The Johnson Compai<br>G1916<br>Kenilworth Park DC | The Johnson Company, Inc.<br>G1916<br>Kenilworth Park DC | -                                                         | ANALY<br>3C_AIR<br>EPA 3C – Detern | TICAL QC                                                                                                                                  | ANALYTICAL QC SUMMARY REPORT<br>3C_AIR<br>EPA 3C Determination Fixed Gases (Air) Modified EPA 3C | PORT<br>EPA 3C                                        |                 | a management of the second sec |
| Sample ID: MB-39661<br>Client ID: MB-39661<br>Analyte<br>Methane   | 661<br>661                                        | SampType: MBLK<br>Batch ID: 39661                        | TestCode: 3C_AIR<br>Units: ppmv<br>Result PQL<br>ND 10    | SPK value                          | Prep Date: 10/29/2008<br>Analysis Date: 10/29/2008<br>SPK Ref Val %REC Low                                                                | Limit HighLimi                                                                                   | Run ID: V9_081029A<br>SeqNo: 913219<br>t RPD Ref Val  | %RPD RPDLimit   | Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sample ID: MB-39887<br>  Client ID: MB-39887<br>Analyte<br>Methane | 887<br>887                                        | SampType: MBLK<br>Batch ID: 39887                        | TestCode: 3C_AIR<br>Units: ppmv<br>Result PQL<br>ND 10    | SPK value                          | Prep Date: 11/07/2008<br>Analysis Date: 11/07/2008<br>SPK Ref Val %REC Low                                                                | Limit HighLim                                                                                    | Run ID: V9_081107A<br>SeqNo: 920137<br>tt RPD Ref Val | %RPD RPDLimit   | Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sample ID: LCS-39661<br>Client ID: LCS-39661<br>Analyte<br>Methane | 9661<br>9661                                      | SampType: LCS<br>Batch ID: 39661                         | TestCode: 3C_AIR<br>Units: ppmv<br>Result PQL<br>487.1 10 | SPK value                          | Prep Date:         10/29/2008           Analysis Date:         10/29/2008           SPK Ref Val         %REC Low           0         97.4 | Limit HighLimi                                                                                   | Run ID: V9_081029A<br>SeqNo: 913220<br>It RPD Ref Val | %RPD RPDLimit   | Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sample ID: LCS-39887<br>Client ID: LCS-39887<br>Analyte<br>Methane | 9887                                              | SampType: LCS<br>Batch ID: 39887                         | TestCode: 3C_AIR<br>Units: ppmv<br>Result PQL             | SPK value                          | Prep Date:         11/07/2008           Analysis Date:         11/07/2008           SPK Ref Val         %REC Low           0         87.7 | Limit HighLimi                                                                                   | Run ID: V9_081107A<br>SeqNo: 920138<br>t RPD Ref Val  | %RPD RPDLimit   | Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <u> </u>                                                           | G1916-01ADUP<br>KPN-JCO-SV-09-DU                  | SampType: DUP<br>Batch ID: 39887                         | TestCode: 3C<br>Units: pp<br>Result P                     | SPK value                          | Prep Date: 11/07/2008<br>Analysis Date: 11/07/2008<br>SPK Ref Val %REC Low                                                                | Limit HighLimi                                                                                   | Run ID: V9_081107A<br>SeqNo: 920145<br>t RPD Ref Val  | %RPD RPDLimit   | Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Methane                                                            |                                                   |                                                          | 40390 200                                                 | 0                                  | 0                                                                                                                                         | 0 0                                                                                              | 38760                                                 | 4.1 30          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit


B - Analyte detected in the associated Method Blank

Qualifiers:

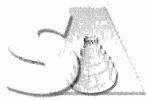
| Mitkem                                                       | Mitkem Laboratories                                                            |                             | (1          | :7/Oct/              | 27/Oct/08 8:41               | Wo                           | WorkOrder: G1916                        |
|--------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------|-------------|----------------------|------------------------------|------------------------------|-----------------------------------------|
| Client ID: JOH<br>Project: Ken<br>Location:<br>Comments: N/A | Client ID: JOHNSON<br>Project: Kenilworth Park DC<br>Location:<br>omments: N/A |                             |             | Case:<br>SDG:<br>PO: | àse:<br>DG:<br>PO: 3-0700-11 | HC Due: 11/03/08<br>Fax Due: | Report Level: LEVEL 2<br>EDD: ENVIRO_16 |
| Sample ID                                                    | HS Client Sample ID                                                            | Collection Date             | Date Recv'd | Matrix               | Test Code                    | Lab Test Comments            | Hold MS SEL Storage                     |
| G1916-01A                                                    | KPN-JCO-SV-09-DUP                                                              | 10/17/2008 14:59 10/20/2008 | 10/20/2008  | Air                  | 3C_AIR                       | Methane only                 | VOV                                     |
| G1916-02A                                                    | KPN-JCO-SV-10D                                                                 | 10/17/2008 8:37 10/20/2008  | 10/20/2008  | Air                  | 3C_AIR                       | Methane only                 | NOA                                     |
| G1916-03A                                                    | KPN-JCO-SV-10S                                                                 | 10/17/2008 8:27             | 10/20/2008  | Air                  | 3C_AIR                       | Methane only                 | NoA D                                   |
| G1916-04A                                                    | CIII-V2-O2L-N4X                                                                | 10/17/2008 8:02             | 10/20/2008  | Air                  | 3C_AIR                       | Methane only                 | VOA                                     |
| G1916-05A                                                    | KPN-JCO-SV-11S                                                                 | 10/17/2008 8:11             | 10/20/2008  | Air                  | 3C_AIR                       | Methane only                 | NoA U                                   |
| G1916-06A                                                    | KPN-JCO-SV-12                                                                  | 10/17/2008 7:40             | 10/20/2008  | Air                  | 3C_AIR                       | Methane only                 | VOA                                     |
| G1916-07A                                                    | KPN-JCO-SV-13                                                                  | 10/17/2008 7:12 10/20/2008  | 10/20/2008  | Air                  | 3C_AIR                       | Methane only                 | vov                                     |
|                                                              |                                                                                |                             |             |                      |                              |                              |                                         |

tS S Jubilient Rep: Edward A Lawler

Page 1 of 1



suuru inam NEBS CUSTEMS (printing service - 1 800 866 8367 - NEES IN: Peturvicupa, Net GNER - www.netwicup


### MITKEM LABORATORIES Sample Condition Form

Page \_\_ l of \_\_ l

| Received By: C.A.                        | Reviewed By                | : \$4  |          |     |                  | Date: 1456% MITKEM Workorder #: 014 |                               |         |          |                | 16             |
|------------------------------------------|----------------------------|--------|----------|-----|------------------|-------------------------------------|-------------------------------|---------|----------|----------------|----------------|
| Client Project: Keniby                   | Dorth - Lf                 |        |          |     |                  |                                     |                               |         |          | Soil Headspace |                |
|                                          |                            |        | <u></u>  |     | HNO <sub>3</sub> |                                     |                               |         | 11.00    | VOA            | or Air Bubbles |
|                                          | ~                          |        | Samp     | 1   | HNO <sub>3</sub> | H₂SO₄                               | HCI                           | NaOH    | H₃PO₄    | Matrix         | <u>≥ 1/4"</u>  |
| 1) Cooler Sealed Yes                     | Ng                         | 61     | 116      | 01  |                  |                                     |                               |         |          |                |                |
|                                          |                            |        |          | 02  |                  |                                     |                               |         |          |                |                |
| 2) Custody Seal(s)                       | Present Absent             |        |          | a3  |                  |                                     |                               |         |          |                |                |
| ,,                                       | Coolers / Bottles          |        |          | 04  |                  |                                     |                               |         |          |                |                |
|                                          | Intact / Broken            |        |          | 05  |                  | -                                   |                               |         |          |                |                |
|                                          | Intact / DIOKEN            |        | $\vdash$ |     |                  |                                     |                               |         |          |                |                |
|                                          | .11                        |        | <u> </u> | 06  |                  |                                     |                               |         |          | _              |                |
| <ol><li>Custody Seal Number(s)</li></ol> |                            | Gr     | ille     | 07  |                  |                                     |                               |         |          |                |                |
|                                          |                            |        |          |     |                  |                                     |                               |         |          |                |                |
|                                          |                            |        |          |     |                  |                                     |                               |         |          |                |                |
|                                          |                            |        |          |     |                  |                                     |                               |         |          |                | /              |
|                                          |                            |        |          |     |                  |                                     |                               |         |          |                |                |
| 4) Chain-of-Custody                      | Present                    |        |          |     |                  |                                     |                               |         |          | /              |                |
| ,,,                                      |                            |        |          |     |                  |                                     |                               |         |          |                |                |
| 5) Cooler Temperature                    |                            |        |          |     |                  |                                     |                               |         | $\vdash$ | _              |                |
|                                          |                            |        |          |     |                  |                                     |                               | /       | 1        |                |                |
| Coolant Condition                        |                            |        |          |     |                  |                                     |                               |         |          |                |                |
|                                          |                            |        |          |     |                  |                                     |                               | /       |          |                |                |
| 6) Airbill(s)                            | Present Absent             |        | _        |     |                  |                                     | $\square$                     |         |          |                |                |
| Airbill Number(s)                        | Cum                        |        |          |     |                  |                                     | 12                            |         |          |                |                |
|                                          |                            |        |          |     |                  | N/                                  | 6                             |         |          |                |                |
|                                          |                            |        |          |     |                  | P/1                                 | B                             |         |          |                |                |
|                                          |                            |        |          |     |                  | 1.0                                 | ř –                           |         |          |                |                |
|                                          | _/                         |        |          |     | 7                | 1°                                  |                               |         |          |                |                |
|                                          |                            |        |          |     |                  |                                     |                               |         |          |                |                |
| 7) Sample Bottles                        | thtact/Broken/Leaking      |        |          |     | /                |                                     |                               |         |          |                |                |
|                                          |                            |        | _        | -/  |                  |                                     |                               |         |          |                |                |
| 8) Date Received                         | 10/25/08                   |        |          |     |                  |                                     |                               |         |          |                |                |
|                                          |                            |        |          |     |                  |                                     |                               |         |          |                |                |
| 9) Time Received                         | 10/25/c8<br>12:5C          |        | /        | ĺ   |                  |                                     | VOA Matrix Key:               |         |          |                |                |
|                                          |                            |        |          |     |                  |                                     | US = Unpreserved Soil A = Air |         |          | A = Air        |                |
| Preservative Name/Lot No:                |                            |        | 7        |     |                  |                                     |                               | Jnprese |          |                | H = HCI        |
|                                          |                            | 1      |          |     |                  |                                     | <b>М</b> = Ме                 | •       |          |                | E = Encore     |
|                                          |                            | -/-    |          |     |                  |                                     |                               | aHSO₄   |          |                | F = Freeze     |
|                                          |                            | 1-     |          |     |                  |                                     |                               |         |          |                |                |
|                                          |                            | -      |          |     |                  | _                                   |                               |         |          |                |                |
| See Sample Cond                          | lition Notification/Correc | tive A | ction Fo | orm | yes /n           | 6/                                  |                               |         |          |                |                |
|                                          |                            |        |          |     |                  |                                     | Rad O                         | K yes/  | no       |                |                |

Last Page of Data Report

Report Date: 02-Apr-09 15:13



Final Report
 Re-Issued Report
 Revised Report

SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

## Laboratory Report

Johnson Company 100 State Street, Suite 600 Montpelier, VT 05602 Attn: Bob Osborne

Project: Kennelworth Park - DC Project 3-0700-11

| Laboratory ID | Client Sample 1D   | <u>Matrix</u> | Date Sampled    | Date Received   |
|---------------|--------------------|---------------|-----------------|-----------------|
| SA92454-01    | KPS-JCO-SV-101S    | Air           | 21-Mar-09 13:22 | 22-Mar-09 09:20 |
| SA92454-02    | KPS-JCO-SV-102S    | Air           | 21-Mar-09 14:10 | 22-Mar-09 09:20 |
| SA92454-03    | KPS-JCO-SV-103D    | Air           | 21-Mar-09 10:14 | 22-Mar-09 09:20 |
| SA92454-04    | KPS-JCO-SV-103 Dup | Air           | 21-Mar-09 10:14 | 22-Mar-09 09:20 |
| SA92454-05    | KPS-JCO-SV-106D    | Air           | 21-Mar-09 10:34 | 22-Mar-09 09:20 |
| SA92454-06    | KPS-JCO-SV-104D    | Air           | 21-Mar-09 [1:02 | 22-Mar-09 09:20 |
| SA92454-07    | KPS-JCO-SV-105D    | Air           | 21-Mar-09 11:22 | 22-Mar-09 09:20 |

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received. All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435 Vermont # VT-11393



Authorized by:

Hanibal C. Tayeh, Ph.D. President/Laboratory Director

Technical Reviewer's Initial:

R

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes.

Please note that this report contains 6 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supercedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report is available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

### CASE NARRATIVE:

1

The samples were received 20.0 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/-2.0 degrees Celsius was used immediately upon receipt of the samples.

| Sample Identification<br>KPS-JCO-SV-101S<br>SA92454-01                                    |                      |             | <u>t Project #</u><br>)700-11                      |                        | <u>Matrix</u><br>Air    | Collection Date/Time<br>21-Mar-09 13:22 |                                     |                | Received<br>22-Mar-09       |                |  |
|-------------------------------------------------------------------------------------------|----------------------|-------------|----------------------------------------------------|------------------------|-------------------------|-----------------------------------------|-------------------------------------|----------------|-----------------------------|----------------|--|
| CAS No. Annlyte(s)                                                                        | Result               | Flag        | Units                                              | *RDL                   | Dilution                | Method Ref.                             | Prepared                            | Analyzed       | Batch                       | Cert.          |  |
| Subcontracted Analyses                                                                    |                      |             |                                                    |                        |                         |                                         |                                     |                |                             |                |  |
| Analysis performed by MITKEM - 11522<br>74-82-8 Methane                                   | BRL                  | U           | PPM∨                                               | 10                     | 1                       | EPA 3C                                  | 26-Mar-09                           | 26-Mar-09      | 42562                       |                |  |
| ····文弼,收1、(1963)题 (184-1977) ···································                          | is state muchs       | . U M U adi | and man I'' a to the the                           | . 1971 and wheather    | ar 1979 Bara Maraad Sha | ung and ut have a space as              | r of military and the second        | uranisan merat | or al act                   | alter de Bri   |  |
| Sample Identification<br>KPS-JCO-SV-102S<br>SA92454-02                                    |                      |             | <u>at Project #</u><br>0700-11                     |                        | <u>Matrix</u><br>Air    |                                         | on Date/Time<br>r-09 14:10          | _              | <u>Received</u><br>22-Mar-0 | -              |  |
| CAS No. Analyte(s)                                                                        | Result               | Flag        | Units                                              | *RDL                   | Dilution                | Method Ref.                             | Prepared                            | Analyzed       | Batch                       | Cert.          |  |
| Subcontracted Analyses                                                                    |                      |             |                                                    |                        |                         |                                         |                                     |                |                             |                |  |
| Analysis performed by MITKEM - 11522<br>74-82-8 Methane                                   | 2,300                |             | PPM∨                                               | 10                     | 1                       | EPA 3C                                  | 26-Mar-09                           |                |                             |                |  |
| Sample Identification           KPS-JCO-SV-103D         SA92454-03                        | 488, 77 "1941, 8 M.F | Clier       | e 1900 met 1960<br>n <u>t Project #</u><br>0700-11 | n: 1993), 463:1732_£.) | <u>Matrix</u><br>Air    | Collection                              | on Date/Time<br>ar-09 10:14         | <u>e</u>       | Receive<br>22-Mar-(         | <u>d</u>       |  |
| CAS No. Analyte(s)                                                                        | Result               | Flag        | Units                                              | *RDL                   | Dilution                | Method Ref.                             | Prepared                            | Analyzed       | Batch                       | Cert.          |  |
| Subcontracted Analyses                                                                    |                      |             |                                                    |                        |                         |                                         |                                     |                |                             |                |  |
| Analysis performed by MITKEM - 11522<br>74-82-8 Methane                                   | BRL                  | U           | PPM∨                                               | 10                     | 1                       | EPA 3C                                  | 26-Mar-09                           | 26-Mar-09      | 42562                       |                |  |
| <u>Sample Identification</u><br>KPS-JCO-SV-103 Dup<br>SA92454-04                          |                      |             | <u>nt Project #</u><br>•0700-11                    |                        | <u>Matrix</u><br>Air    |                                         | <u>on Date/Tim</u><br>ar-09 10:14   | <u>e</u>       | <u>Receive</u><br>22-Mar-   | _              |  |
| CAS No. Analyte(s)                                                                        | Result               | Flag        | Units                                              | *RDL                   | Dilution                | Method Ref.                             | Prepared                            | Analyzed       | Batch                       | Cert.          |  |
| Subcontracted Analyses                                                                    |                      |             |                                                    |                        |                         |                                         |                                     |                |                             |                |  |
| Analysis performed by MITKEM - 11522<br>74-82-8 Methane                                   | BRL                  | U           | PPMV                                               | 10                     | 1                       | EPA 3C                                  | 26-Mar-09                           | 26-Mar-09      | 42562                       |                |  |
| South Courte of Post Procession<br>Sample Identification<br>KPS-JCO-SV-106D<br>SA92454-05 | λ115 R(.,            | <u>Clie</u> | ent Project #<br>-0700-11                          |                        | <u>Matrix</u><br>Air    | Collect                                 | ion Date/Tim<br>ar-09 10:34         |                | <u>Receive</u><br>22-Mar-   | <u>ed</u>      |  |
| CAS No. Analyte(s)                                                                        | Result               | Flag        | Units                                              | *RDL                   | Dilution                | Method Ref.                             | Prepared                            | Analyzea       | l Batch                     | Cert.          |  |
| Subcontracted Analyses                                                                    |                      |             |                                                    |                        |                         |                                         |                                     |                |                             |                |  |
| Analysis performed by MITKEM - 11522<br>74-82-8 Methane                                   | BRL                  | U           | PPM∨                                               | 10                     | 1                       | EPA 3C                                  | 26-Mar-09                           | 26-Mar-0       | 9 42562                     |                |  |
| 1991 - BATTIN PERMINISI SI MA                                                             | e que e a            | s           | ra je Parkiji                                      | .*                     |                         |                                         | Culture -                           | . 6.37         | n state e i de e            |                |  |
| Sample Identification<br>KPS-JCO-SV-104D<br>SA92454-06                                    |                      |             | ent Project #<br>8-0700-11                         |                        | <u>Matrix</u><br>Air    |                                         | <u>ion Date/Tin</u><br>1ar-09 11:02 | <u>1e</u>      | <u>Receiv</u><br>22-Mar     |                |  |
| CAS No. Analyte(s)                                                                        | Result               | Flag        | Units                                              | *RDL                   | Dilution                | Method Ref.                             | Prepared                            | Analyze        | d Batch                     | Ce <b>rt</b> . |  |
| Subcontracted Analyses                                                                    |                      |             |                                                    |                        |                         |                                         |                                     |                |                             |                |  |
| Analysis performed by MITKEM - 11522<br>74-82-8 Methane                                   | BRL                  | U           | PPMV                                               | 10                     | 1                       | EPA 3C                                  | 26-Mar-09                           | 9 26-Mar-0     | 9 42562                     |                |  |

\* Reportable Detection Limit BRL = Below Reporting Limit

| Sample Identification<br>KPS-JCO-SV-105D<br>SA92454-07 |        | <u>Client Project #</u><br>3-0700-11 |       |      | <u>Matrix</u><br>Air | Collection Date/Time<br>21-Mar-09 11:22 |           |           | Received<br>22-Mar-09 |       |  |
|--------------------------------------------------------|--------|--------------------------------------|-------|------|----------------------|-----------------------------------------|-----------|-----------|-----------------------|-------|--|
| CAS No. Analyte(s)                                     | Result | Flag                                 | Units | *RDL | Dilution             | Method Ref.                             | Prepared  | Analyzed  | Batch                 | Cert. |  |
| Subcontracted Analyses                                 |        |                                      |       |      |                      |                                         |           |           |                       |       |  |
| Analysis performed by MITKEM - 11522                   |        |                                      |       |      |                      |                                         |           |           |                       |       |  |
| 74-82-8 Methane                                        | BRL    | U                                    | PPMV  | 10   | 1                    | EPA 3C                                  | 26-Mar-09 | 26-Mar-09 | 42562                 |       |  |

--

## Subcontracted Analyses - Quality Control

| Analyte(s)                                                          | Result | Flag | Units | *RDL | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD  | RPD<br>Limit |
|---------------------------------------------------------------------|--------|------|-------|------|----------------|------------------|------|----------------|------|--------------|
| Batch 42562 - EPA 3C                                                |        |      |       | _    |                |                  |      |                |      |              |
| DUP (H0451-02ADUP)<br>Prepared & Analyzed: 26-Mar-09<br>Methane     | 2673   |      | PPMV  | 10   |                |                  |      | -              | 16.5 | 30.0         |
| LCS (LCS-42562)                                                     | 2010   |      |       |      |                |                  |      |                | 1010 |              |
| Prepared & Analyzed: 26-Mar-09<br>Methane                           | 429.0  |      | PPMV  | 10   |                |                  | 85.8 | 70-130         |      |              |
| <u>MBLK (MB-42562)</u><br>Prepared & Analyzed: 26-Mar-09<br>Methane | BRL    | U    | PPMV  | 10   |                |                  |      | -              |      |              |

#### Notes and Definitions

- U Compound not detected above a reporting limit
- BRL Below Reporting Limit Analyte NOT DETECTED at or above the reporting limit
- dry Sample results reported on a dry weight basis
- NR Not Reported
- RPD Relative Percent Difference

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC.

Laboratory Control Sample (LCS): A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

<u>Reportable Detection Limit (RDL)</u>: The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

Validated by: Hanibal C. Tayeh, Ph.D.

SMMPLE COLLECTOR Sample Disposal Method: 4PS-JW-SV-104D KPS-TRO-SV-1067 425-Jeo-SV-103 24 HPS-Jce -SV-1030 Aps-Jo-54-1015 3/21/09 13:22 KB-JW\_SV-1050 3/21/08 Relinquistient by: (Signature) Relinquisjed/by: J.Signature) 122-1-25-21-1025 Sampler Signation Project No. C/ent / Project Name NPS - Kehilworth Part South 5-0700-11 Sample No. : Identification STREAM STREAM THE JOHNSON COMPANY, INC ŗ, Thirton I. I. webstrader haden Messek 1997 IV 4994 -5, <sup>1</sup>, <sub>1</sub>1, WHITE - To accompany sample to the lab and returned to the Johnson Co. VELLOW - Leb supp. PRNK - Trouporter cupy. CBLD - Sampler supp. Aquinter of the second process of the second Date 10:14 11:22 10:34 12 12/2/ 41:01 14:10 11:02 12211 Lab Sample Number ਂ ਜ੍ਰ-С. ~~ 199 199 دے 11---0 \_\_\_\_\_ Chain of Custody Tape No. Field Logbook No TR0 - 9 Weshington DC Project Location CHAIN OF CUST JDY RECORD Mir (Sull bes) 1 ANALYTICAL LABORATORY 3/22/09 7120 Cate Disposed of by: (Signature) Date Spectrum Analytical (Bow) 789-9115 Fieldsheets Hyamann MA Type of Sample Sel 64 Sec. BIE [ little Relatived St Laboratory: (Signature) Repeived by (Stynalyte) Methone ゞ  $\prec$ × ٨ × 7. ~ 3 ž 27 0129 2863 23 1072 40 14 1-0 30 0107 1305 27 0113 2833 1040 1087 26 0135 56 Ron Can 10782858 500 Cree Star Regelater ANALYZES ومر به Ň 3/22/63 5 CAM Caurier L Summe Shipper ID & Dale Dale REMARKS Teno <u>Tinse</u> Prop A11 50 Zr PAS  $d \sim n$ type

4

2012

## **APPENDIX 6**

# SURFACE SOIL LABORATORY REPORTS



Final Report
 Re-Issued Report
 Revised Report

SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

## Laboratory Report

Project: Kennelworth Park - DC Project 3-0700-11

Johnson Company 100 State Street, Suite 600 Montpelier, VT 05602 Attn: Bob Osborne

| Laboratory ID | <u>Client Sample ID</u> | <u>Matrix</u> | Date Sampled    | Date Received   |
|---------------|-------------------------|---------------|-----------------|-----------------|
| SA85969-01    | KPN-JCO-SS-01           | Soil          | 14-Oct-08 07:45 | 15-Oct-08 10:35 |
| SA85969-02    | KPN-JCO-SS-02           | Soil          | 14-Oct-08 09:30 | 15-Oct-08 10:35 |
| SA85969-03    | KPN-JCO-SS-03           | Soil          | 14-Oct-08 10:35 | 15-Oct-08 10:35 |
| SA85969-04    | KPN-JCO-SS-04           | Soil          | 14-Oct-08 11:10 | 15-Oct-08 10:35 |
| SA85969-05    | KPN-JCO-SS-05           | Soil          | 14-Oct-08 11:50 | 15-Oct-08 10:35 |
| SA85969-06    | KPN-JCO-SS-06           | Soil          | 14-Oct-08 15:40 | 15-Oct-08 10:35 |
| SA85969-07    | KPN-JCO-SS-07           | Soil          | 14-Oct-08 15:45 | 15-Oct-08 10:35 |
| SA85969-08    | KPN-JCO-SS-07Dup        | Soil          | 14-Oct-08 15:50 | 15-Oct-08 10:35 |
| SA85969-09    | KPN-JCO-SS-08           | Soil          | 14-Oct-08 12:30 | 15-Oct-08 10:35 |
| SA85969-10    | KPN-JCO-SS-09           | Soil          | 14-Oct-08 13:05 | 15-Oct-08 10:35 |
| SA85969-11    | KPN-JCO-SS-10           | Soil          | 14-Oct-08 13:30 | 15-Oct-08 10:35 |
| SA85969-12    | KPN-JCO-SS-11           | Soil          | 14-Oct-08 15:55 | 15-Oct-08 10:35 |
| SA85969-13    | KPN-JCO-SS-12           | Soil          | 14-Oct-08 16:07 | 15-Oct-08 10:35 |
| SA85969-14    | KPN-JCO-SS-13           | Soil          | 14-Oct-08 15:20 | 15-Oct-08 10:35 |

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes.

Please note that this report contains 9 pages of analytical data plus Chain of Custody document(s).

This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435 Vermont # VT-11393



Authorized by:

Hanibal C. Tayeh, Ph.D. President/Laboratory Director

Technical Reviewer's Initial:

P

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

| Sample Identification<br>KPN-JCO-SS-01<br>SA85969-01 |        |      | <u>nt Project #</u><br>0700-11 |      | <u>Matrix</u><br>Soil |             |                            |                    | Received<br>15-Oct-08       |       |  |
|------------------------------------------------------|--------|------|--------------------------------|------|-----------------------|-------------|----------------------------|--------------------|-----------------------------|-------|--|
| CAS No. Analyte(s)                                   | Result | Flag | Units                          | *RDL | Dilution              | Method Ref. | Prepared                   | Analyzed           | Batch                       | Cert. |  |
| General Chemistry Parameters                         |        |      |                                |      |                       |             |                            |                    |                             |       |  |
| Total Organic Carbon<br>Toxicity Characteristics     | 7,390  | ТОСр | mg/kg                          | 100  | 1                     | SW846 9060  | 17-Oct-08                  | 17-Oct-08          | 8101281                     |       |  |
| рН                                                   | 7.19   | рННТ | pH Units                       |      | 1                     | SW846 9045C | 15-Oct-08<br>11:09         | 15-Oct-08<br>13:16 | 8101079                     | х     |  |
| Sample Identification<br>KPN-JCO-SS-02<br>SA85969-02 |        |      | <u>nt Project #</u><br>0700-11 |      | <u>Matrix</u><br>Soil |             | on Date/Time<br>t-08 09:30 | <u>e</u>           | <u>Received</u><br>15-Oct-0 | -     |  |
| CAS No. Analyte(s)                                   | Result | Flag | Units                          | *RDL | Dilution              | Method Ref. | Prepared                   | Analyzed           | Batch                       | Cert. |  |
| General Chemistry Parameters                         |        |      |                                |      |                       |             |                            |                    |                             |       |  |
| Total Organic Carbon<br>Toxicity Characteristics     | 3,370  | TOCk | mg/kg                          | 100  | 1                     | SW846 9060  | 17-Oct-08                  | 17-Oct-08          | 8101281                     |       |  |
| pH                                                   | 7.29   | рННТ | pH Units                       |      | 1                     | SW846 9045C | 15-Oct-08<br>11:09         | 15-Oct-08<br>13:21 | 8101079                     | х     |  |
| Sample Identification<br>KPN-JCO-SS-03<br>SA85969-03 |        |      | <u>nt Project #</u><br>0700-11 |      | <u>Matrix</u><br>Soil |             | on Date/Time<br>t-08 10:35 | <u>e</u>           | <u>Received</u><br>15-Oct-0 |       |  |
| CAS No. Analyte(s)                                   | Result | Flag | Units                          | *RDL | Dilution              | Method Ref. | Prepared                   | Analyzed           | Batch                       | Cert. |  |
| General Chemistry Parameters                         |        |      |                                |      |                       |             |                            | -                  |                             |       |  |
| Total Organic Carbon<br>Toxicity Characteristics     | 9,790  | TOCi | mg/kg                          | 100  | 1                     | SW846 9060  | 20-Oct-08                  | 20-Oct-08          | 8101418                     |       |  |
| рН                                                   | 7.42   | pHHT | pH Units                       |      | 1                     | SW846 9045C | 15-Oct-08<br>11:09         | 15-Oct-08<br>13:26 | 8101079                     | Х     |  |
| Sample Identification<br>KPN-JCO-SS-04<br>SA85969-04 |        |      | <u>nt Project #</u><br>0700-11 |      | <u>Matrix</u><br>Soil |             | on Date/Time<br>t-08 11:10 | <u>e</u>           | Received<br>15-Oct-0        | -     |  |
| CAS No. Analyte(s)                                   | Result | Flag | Units                          | *RDL | Dilution              | Method Ref. | Prepared                   | Analyzed           | Batch                       | Cert. |  |
| General Chemistry Parameters                         |        |      |                                |      |                       |             |                            |                    |                             |       |  |
| Total Organic Carbon<br>Toxicity Characteristics     | 6,620  | TOCj | mg/kg                          | 100  | 1                     | SW846 9060  | 20-Oct-08                  | 20-Oct-08          | 8101418                     |       |  |
| рН                                                   | 7.11   | рННТ | pH Units                       |      | 1                     | SW846 9045C | 15-Oct-08<br>11:09         | 15-Oct-08<br>13:29 | 8101079                     | Х     |  |
| Sample Identification<br>KPN-JCO-SS-05<br>SA85969-05 |        |      | <u>nt Project #</u><br>0700-11 |      | <u>Matrix</u><br>Soil |             | on Date/Time<br>t-08 11:50 | <u>e</u>           | <u>Received</u><br>15-Oct-0 |       |  |
| CAS No. Analyte(s)                                   | Result | Flag | Units                          | *RDL | Dilution              | Method Ref. | Prepared                   | Analyzed           | Batch                       | Cert. |  |
| General Chemistry Parameters                         |        |      |                                |      |                       |             |                            |                    |                             |       |  |
| Total Organic Carbon<br>Toxicity Characteristics     | 13,000 | TOCn | mg/kg                          | 100  | 1                     | SW846 9060  | 20-Oct-08                  | 20-Oct-08          | 8101418                     |       |  |
| рН                                                   | 6.86   | рННТ | pH Units                       |      | 1                     | SW846 9045C | 15-Oct-08<br>11:09         | 15-Oct-08<br>12:49 | 8101079                     | Х     |  |

| Sample Identification<br>KPN-JCO-SS-06<br>SA85969-06    |        |      | <u>nt Project #</u><br>-0700-11 |      | <u>Matrix</u><br>Soil | Collection Date/Time<br>14-Oct-08 15:40 |                                   |                    | Received<br>15-Oct-08       |       |  |
|---------------------------------------------------------|--------|------|---------------------------------|------|-----------------------|-----------------------------------------|-----------------------------------|--------------------|-----------------------------|-------|--|
| CAS No. Analyte(s)                                      | Result | Flag | Units                           | *RDL | Dilution              | Method Ref.                             | Prepared                          | Analyzed           | Batch                       | Cert. |  |
| General Chemistry Parameters                            |        |      |                                 |      |                       |                                         |                                   |                    |                             |       |  |
| Total Organic Carbon<br>Toxicity Characteristics        | 23,000 | TOCI | mg/kg                           | 100  | 1                     | SW846 9060                              | 20-Oct-08                         | 20-Oct-08          | 8101418                     |       |  |
| рН                                                      | 7.08   | рННТ | pH Units                        |      | 1                     | SW846 9045C                             | 15-Oct-08<br>11:09                | 15-Oct-08<br>12:50 | 8101079                     | х     |  |
| Sample Identification<br>KPN-JCO-SS-07<br>SA85969-07    |        |      | <u>nt Project #</u><br>-0700-11 |      | <u>Matrix</u><br>Soil |                                         | o <u>n Date/Tim</u><br>t-08 15:45 | <u>e</u>           | <u>Received</u><br>15-Oct-0 | -     |  |
| CAS No. Analyte(s)                                      | Result | Flag | Units                           | *RDL | Dilution              | Method Ref.                             | Prepared                          | Analyzed           | Batch                       | Cert. |  |
| General Chemistry Parameters                            |        |      |                                 |      |                       |                                         |                                   |                    |                             |       |  |
| Total Organic Carbon<br>Toxicity Characteristics        | 37,200 | TOC  | mg/kg                           | 100  | 1                     | SW846 9060                              | 20-Oct-08                         | 20-Oct-08          | 8101418                     |       |  |
| рН                                                      | 6.74   | pHHT | pH Units                        |      | 1                     | SW846 9045C                             | 15-Oct-08<br>11:09                | 15-Oct-08<br>12:52 | 8101079                     | х     |  |
| Sample Identification<br>KPN-JCO-SS-07Dup<br>SA85969-08 |        |      | <u>nt Project #</u><br>-0700-11 |      | <u>Matrix</u><br>Soil |                                         | on Date/Tim<br>t-08 15:50         | <u>e</u>           | <u>Received</u><br>15-Oct-0 | -     |  |
| CAS No. Analyte(s)                                      | Result | Flag | Units                           | *RDL | Dilution              | Method Ref.                             | Prepared                          | Analyzed           | Batch                       | Cert. |  |
| General Chemistry Parameters                            |        |      |                                 |      |                       |                                         |                                   |                    |                             |       |  |
| Total Organic Carbon<br>Toxicity Characteristics        | 50,100 | TOCc | mg/kg                           | 100  | 1                     | SW846 9060                              | 20-Oct-08                         | 20-Oct-08          | 8101418                     |       |  |
| рН                                                      | 6.44   | рННТ | pH Units                        |      | 1                     | SW846 9045C                             | 15-Oct-08<br>11:09                | 15-Oct-08<br>12:54 | 8101079                     | Х     |  |
| Sample Identification<br>KPN-JCO-SS-08<br>SA85969-09    |        |      | <u>nt Project #</u><br>-0700-11 |      | <u>Matrix</u><br>Soil |                                         | on Date/Tim<br>t-08 12:30         | <u>e</u>           | Received<br>15-Oct-0        | -     |  |
| CAS No. Analyte(s)                                      | Result | Flag | Units                           | *RDL | Dilution              | Method Ref.                             | Prepared                          | Analyzed           | Batch                       | Cert. |  |
| General Chemistry Parameters                            |        |      |                                 |      |                       |                                         |                                   |                    |                             |       |  |
| Total Organic Carbon<br>Toxicity Characteristics        | 3,510  | TOCf | mg/kg                           | 100  | 1                     | SW846 9060                              | 20-Oct-08                         | 20-Oct-08          | 8101418                     |       |  |
| рН                                                      | 7.08   | pHHT | pH Units                        |      | 1                     | SW846 9045C                             | 15-Oct-08<br>11:09                | 15-Oct-08<br>12:57 | 8101079                     | Х     |  |
| Sample Identification<br>KPN-JCO-SS-09<br>SA85969-10    |        |      | <u>nt Project #</u><br>-0700-11 |      | <u>Matrix</u><br>Soil |                                         | o <u>n Date/Tim</u><br>t-08 13:05 | <u>e</u>           | <u>Received</u><br>15-Oct-0 | _     |  |
| CAS No. Analyte(s)                                      | Result | Flag | Units                           | *RDL | Dilution              | Method Ref.                             | Prepared                          | Analyzed           | Batch                       | Cert. |  |
| General Chemistry Parameters<br>Total Organic Carbon    | 5,460  | TOCe | mg/kg                           | 100  | 1                     | SW846 9060                              | 20-Oct-08                         | 20-Oct-08          | 8101418                     |       |  |
| Toxicity Characteristics<br>pH                          | 7.22   | рННТ | pH Units                        |      | 1                     | SW846 9045C                             | 15-Oct-08<br>11:09                | 15-Oct-08<br>12:58 | 8101079                     | х     |  |

| Sample Identification<br>KPN-JCO-SS-10<br>SA85969-11 |        |      | <u>nt Project #</u><br>0700-11  |      | <u>Matrix</u><br>Soil | 14-Oct-08 13:30 |                                  |                    | <u>Received</u><br>15-Oct-0 | -     |
|------------------------------------------------------|--------|------|---------------------------------|------|-----------------------|-----------------|----------------------------------|--------------------|-----------------------------|-------|
| CAS No. Analyte(s)                                   | Result | Flag | Units                           | *RDL | Dilution              | Method Ref.     | Prepared                         | Analyzed           | Batch                       | Cert. |
| General Chemistry Parameters                         |        |      |                                 |      |                       |                 |                                  |                    |                             |       |
| Total Organic Carbon<br>Toxicity Characteristics     | 11,600 | TOCo | mg/kg                           | 100  | 1                     | SW846 9060      | 20-Oct-08                        | 20-Oct-08          | 8101418                     |       |
| рН                                                   | 7.18   | pHHT | pH Units                        |      | 1                     | SW846 9045C     | 15-Oct-08<br>11:09               | 15-Oct-08<br>13:04 | 8101079                     | х     |
| Sample Identification<br>KPN-JCO-SS-11<br>SA85969-12 |        |      | <u>nt Project #</u><br>0700-11  |      | <u>Matrix</u><br>Soil |                 | <u>on Date/Tim</u><br>t-08 15:55 | <u>e</u>           | <u>Received</u><br>15-Oct-0 | -     |
| CAS No. Analyte(s)                                   | Result | Flag | Units                           | *RDL | Dilution              | Method Ref.     | Prepared                         | Analyzed           | Batch                       | Cert. |
| General Chemistry Parameters                         |        |      |                                 |      |                       |                 |                                  |                    |                             |       |
| Total Organic Carbon<br>Toxicity Characteristics     | 8,420  | TOCg | mg/kg                           | 100  | 1                     | SW846 9060      | 21-Oct-08                        | 21-Oct-08          | 8101530                     |       |
| рН                                                   | 7.44   | рННТ | pH Units                        |      | 1                     | SW846 9045C     | 15-Oct-08<br>11:09               | 15-Oct-08<br>13:06 | 8101079                     | х     |
| Sample Identification<br>KPN-JCO-SS-12<br>SA85969-13 |        |      | <u>nt Project #</u><br>·0700-11 |      | <u>Matrix</u><br>Soil |                 | <u>on Date/Tim</u><br>t-08 16:07 | <u>e</u>           | <u>Received</u><br>15-Oct-0 |       |
| CAS No. Analyte(s)                                   | Result | Flag | Units                           | *RDL | Dilution              | Method Ref.     | Prepared                         | Analyzed           | Batch                       | Cert. |
| General Chemistry Parameters                         |        |      |                                 |      |                       |                 |                                  |                    |                             |       |
| Total Organic Carbon<br>Toxicity Characteristics     | 16,200 | TOCd | mg/kg                           | 100  | 1                     | SW846 9060      | 21-Oct-08                        | 21-Oct-08          | 8101530                     |       |
| рH                                                   | 7.38   | рННТ | pH Units                        |      | 1                     | SW846 9045C     | 15-Oct-08<br>11:09               | 15-Oct-08<br>13:07 | 8101079                     | х     |
| Sample Identification<br>KPN-JCO-SS-13<br>SA85969-14 |        |      | <u>nt Project #</u><br>0700-11  |      | <u>Matrix</u><br>Soil |                 | <u>on Date/Tim</u><br>t-08 15:20 | <u>e</u>           | <u>Received</u><br>15-Oct-0 | -     |
| CAS No. Analyte(s)                                   | Result | Flag | Units                           | *RDL | Dilution              | Method Ref.     | Prepared                         | Analyzed           | Batch                       | Cert. |
| General Chemistry Parameters                         |        |      |                                 |      |                       |                 |                                  |                    |                             |       |
| Total Organic Carbon<br>Toxicity Characteristics     | 33,200 | TOCb | mg/kg                           | 100  | 1                     | SW846 9060      | 21-Oct-08                        | 21-Oct-08          | 8101530                     |       |
| рН                                                   | 6.53   | pHHT | pH Units                        |      | 1                     | SW846 9045C     | 15-Oct-08<br>11:09               | 15-Oct-08<br>13:12 | 8101079                     | Х     |

# **General Chemistry Parameters - Quality Control**

| Analyte(s)                                             | Result            | Flag  | Units   | *RDL | Spike<br>Level | Source<br>Result | %REC   | %REC<br>Limits | RPD   | RPD<br>Limit |
|--------------------------------------------------------|-------------------|-------|---------|------|----------------|------------------|--------|----------------|-------|--------------|
|                                                        |                   | Tiug  | Onto    | RDL  | Level          | Result           | /orcle | Linits         | ICI D | Emm          |
| Batch 8101281 - General Preparation                    |                   |       |         |      |                |                  |        |                |       |              |
| Blank (8101281-BLK1)                                   |                   |       |         |      |                |                  |        |                |       |              |
| Prepared & Analyzed: 17-Oct-08                         |                   |       |         |      |                |                  |        |                |       |              |
| Total Organic Carbon                                   | BRL               |       | mg/kg   | 100  |                |                  |        |                |       |              |
| Calibration Blank (8101281-CCB1)                       |                   |       |         |      |                |                  |        |                |       |              |
| Prepared & Analyzed: 17-Oct-08                         |                   |       |         |      |                |                  |        |                |       |              |
| Total Organic Carbon                                   | -1.37             |       | mg/kg   |      |                |                  |        |                |       |              |
| Calibration Blank (8101281-CCB2)                       |                   |       |         |      |                |                  |        |                |       |              |
| Prepared & Analyzed: 17-Oct-08                         |                   |       |         |      |                |                  |        |                |       |              |
| Total Organic Carbon                                   | -2.90             |       | mg/kg   |      |                |                  |        |                |       |              |
| Calibration Check (8101281-CCV1)                       |                   |       |         |      |                |                  |        |                |       |              |
| Prepared & Analyzed: 17-Oct-08                         | 004               |       |         |      | 1000           |                  |        | 05 445         |       |              |
| Total Organic Carbon                                   | 894               |       | mg/kg   |      | 1000           |                  | 89     | 85-115         |       |              |
| Calibration Check (8101281-CCV2)                       |                   |       |         |      |                |                  |        |                |       |              |
| Prepared & Analyzed: 17-Oct-08                         | 0040              |       | maller  |      | 0000           |                  | 100    | 0F 11F         |       |              |
| Total Organic Carbon                                   | 8040              |       | mg/kg   |      | 8000           |                  | 100    | 85-115         |       |              |
| Calibration Check (8101281-CCV3)                       |                   |       |         |      |                |                  |        |                |       |              |
| Prepared & Analyzed: 17-Oct-08                         | 1020              |       |         |      | 1000           |                  | 102    | 05 445         |       |              |
| Total Organic Carbon                                   | 1030              |       | mg/kg   |      | 1000           |                  | 103    | 85-115         |       |              |
| Calibration Check (8101281-CCV4)                       |                   |       |         |      |                |                  |        |                |       |              |
| Prepared & Analyzed: 17-Oct-08                         | 7880              |       | malka   |      | 8000           |                  | 00     | 05 115         |       |              |
| Total Organic Carbon                                   | 7880              |       | mg/kg   |      | 8000           |                  | 99     | 85-115         |       |              |
| Duplicate (8101281-DUP1)                               | Source: SA85809   | 9-02  |         |      |                |                  |        |                |       |              |
| Prepared & Analyzed: 17-Oct-08<br>Total Organic Carbon | 3780              | TOCh  | mg/kg   | 100  |                | 3390             |        |                | 11    | 20           |
| -                                                      | 5700              | 10011 | iiig/kg | 100  |                | 5550             |        |                |       | 20           |
| Reference (8101281-SRM1)                               |                   |       |         |      |                |                  |        |                |       |              |
| Prepared & Analyzed: 17-Oct-08<br>Total Organic Carbon | 2980              |       | mg/kg   | 100  | 2490           |                  | 120    | 37.35-180.7    |       |              |
|                                                        |                   |       | iiig/kg | 100  | 2430           |                  | 120    | 57.00-100.7    |       |              |
| Batch 8101418 - General Preparation                    |                   |       |         |      |                |                  |        |                |       |              |
| Blank (8101418-BLK1)                                   |                   |       |         |      |                |                  |        |                |       |              |
| Prepared & Analyzed: 20-Oct-08                         |                   |       |         |      |                |                  |        |                |       |              |
| Total Organic Carbon                                   | BRL               |       | mg/kg   | 100  |                |                  |        |                |       |              |
| Calibration Blank (8101418-CCB1)                       |                   |       |         |      |                |                  |        |                |       |              |
| Prepared & Analyzed: 20-Oct-08                         |                   |       |         |      |                |                  |        |                |       |              |
| Total Organic Carbon                                   | -5.89             |       | mg/kg   |      |                |                  |        |                |       |              |
| Calibration Blank (8101418-CCB2)                       |                   |       |         |      |                |                  |        |                |       |              |
| Prepared & Analyzed: 20-Oct-08                         |                   |       |         |      |                |                  |        |                |       |              |
| Total Organic Carbon                                   | 10.7              |       | mg/kg   |      |                |                  |        |                |       |              |
| Calibration Check (8101418-CCV1)                       |                   |       |         |      |                |                  |        |                |       |              |
| Prepared & Analyzed: 20-Oct-08                         |                   |       |         |      | 1000           |                  | ~~     | 05 445         |       |              |
| Total Organic Carbon                                   | 933               |       | mg/kg   |      | 1000           |                  | 93     | 85-115         |       |              |
| Calibration Check (8101418-CCV2)                       |                   |       |         |      |                |                  |        |                |       |              |
| Prepared & Analyzed: 20-Oct-08                         | <b>-</b> <i>z</i> |       |         |      |                |                  |        | 05.44          |       |              |
| Total Organic Carbon                                   | 7920              |       | mg/kg   |      | 8000           |                  | 99     | 85-115         |       |              |
| Calibration Check (8101418-CCV3)                       |                   |       |         |      |                |                  |        |                |       |              |
| Prepared & Analyzed: 20-Oct-08                         |                   |       |         |      |                |                  |        |                |       |              |
| Total Organic Carbon                                   | 1040              |       | mg/kg   |      | 1000           |                  | 104    | 85-115         |       |              |

# **General Chemistry Parameters - Quality Control**

|                                                                    |                |      |       |      | Spike | Source |      | %REC        |     | RPD   |
|--------------------------------------------------------------------|----------------|------|-------|------|-------|--------|------|-------------|-----|-------|
| Analyte(s)                                                         | Result         | Flag | Units | *RDL | Level | Result | %REC | Limits      | RPD | Limit |
| Batch 8101418 - General Preparation                                | 1              |      |       |      |       |        |      |             |     |       |
| Calibration Check (8101418-CCV3)                                   |                |      |       |      |       |        |      |             |     |       |
| Prepared & Analyzed: 20-Oct-08                                     |                |      |       |      |       |        |      |             |     |       |
|                                                                    |                |      |       |      |       |        |      |             |     |       |
| Calibration Check (8101418-CCV4)<br>Prepared & Analyzed: 20-Oct-08 |                |      |       |      |       |        |      |             |     |       |
| Total Organic Carbon                                               | 7770           |      | mg/kg |      | 8000  |        | 97   | 85-115      |     |       |
| -                                                                  |                |      |       |      |       |        | 0.   | 00 110      |     |       |
| Duplicate (8101418-DUP1)<br>Prepared & Analyzed: 20-Oct-08         | Source: SA8596 | 9-04 |       |      |       |        |      |             |     |       |
| Total Organic Carbon                                               | 7610           | TOCm | mg/kg | 100  |       | 6620   |      |             | 14  | 20    |
| -                                                                  | 1010           |      | mgmg  | 100  |       | 0020   |      |             |     | 20    |
| Reference (8101418-SRM1)<br>Prepared & Analyzed: 20-Oct-08         |                |      |       |      |       |        |      |             |     |       |
| Total Organic Carbon                                               | 2150           |      | mg/kg | 100  | 2490  |        | 86   | 37.35-180.7 |     |       |
| -                                                                  |                |      |       | 100  | 2-130 |        | 00   | 57.00-100.7 |     |       |
| Batch 8101530 - General Preparation                                | 1              |      |       |      |       |        |      |             |     |       |
| Blank (8101530-BLK1)                                               |                |      |       |      |       |        |      |             |     |       |
| Prepared & Analyzed: 21-Oct-08                                     |                |      |       |      |       |        |      |             |     |       |
| Total Organic Carbon                                               | BRL            |      | mg/kg | 100  |       |        |      |             |     |       |
| Calibration Blank (8101530-CCB1)                                   |                |      |       |      |       |        |      |             |     |       |
| Prepared & Analyzed: 21-Oct-08                                     |                |      |       |      |       |        |      |             |     |       |
| Total Organic Carbon                                               | 14.6           |      | mg/kg |      |       |        |      |             |     |       |
| Calibration Blank (8101530-CCB2)                                   |                |      |       |      |       |        |      |             |     |       |
| Prepared & Analyzed: 21-Oct-08                                     |                |      |       |      |       |        |      |             |     |       |
| Total Organic Carbon                                               | -1.70          |      | mg/kg |      |       |        |      |             |     |       |
| Calibration Check (8101530-CCV1)                                   |                |      |       |      |       |        |      |             |     |       |
| Prepared & Analyzed: 21-Oct-08                                     |                |      |       |      |       |        |      |             |     |       |
| Total Organic Carbon                                               | 980            |      | mg/kg |      | 1000  |        | 98   | 85-115      |     |       |
| Calibration Check (8101530-CCV2)                                   |                |      |       |      |       |        |      |             |     |       |
| Prepared & Analyzed: 21-Oct-08                                     |                |      |       |      |       |        |      |             |     |       |
| Total Organic Carbon                                               | 7950           |      | mg/kg |      | 8000  |        | 99   | 85-115      |     |       |
| Calibration Check (8101530-CCV3)                                   |                |      |       |      |       |        |      |             |     |       |
| Prepared & Analyzed: 21-Oct-08                                     |                |      |       |      |       |        |      |             |     |       |
| Total Organic Carbon                                               | 1010           |      | mg/kg |      | 1000  |        | 101  | 85-115      |     |       |
| Calibration Check (8101530-CCV4)                                   |                |      |       |      |       |        |      |             |     |       |
| Prepared & Analyzed: 21-Oct-08                                     |                |      |       |      |       |        |      |             |     |       |
| Total Organic Carbon                                               | 7860           |      | mg/kg |      | 8000  |        | 98   | 85-115      |     |       |
| Duplicate (8101530-DUP1)                                           | Source: SA8596 | 9-12 |       |      |       |        |      |             |     |       |
| Prepared & Analyzed: 21-Oct-08                                     |                |      |       |      |       |        |      |             |     |       |
| Total Organic Carbon                                               | 7820           | TOCa | mg/kg | 100  |       | 8420   |      |             | 7   | 20    |
| Reference (8101530-SRM1)                                           |                |      |       |      |       |        |      |             |     |       |
| Prepared & Analyzed: 21-Oct-08                                     |                |      |       |      |       |        |      |             |     |       |
|                                                                    |                |      |       |      |       |        |      |             |     |       |

# **Toxicity Characteristics - Quality Control**

|                                  |                |      |          |      | Spike | Source |      | %REC       |     | RPD   |
|----------------------------------|----------------|------|----------|------|-------|--------|------|------------|-----|-------|
| Analyte(s)                       | Result         | Flag | Units    | *RDL | Level | Result | %REC | Limits     | RPD | Limit |
| Batch 8101079 - General Preparat | tion           |      |          |      |       |        |      |            |     |       |
| Duplicate (8101079-DUP1)         | Source: SA8596 | 9-01 |          |      |       |        |      |            |     |       |
| Prepared & Analyzed: 15-Oct-08   |                |      |          |      |       |        |      |            |     |       |
| рН                               | 7.38           |      | pH Units |      |       | 7.19   |      |            | 3   | 5     |
| Duplicate (8101079-DUP2)         | Source: SA8596 | 9-14 |          |      |       |        |      |            |     |       |
| Prepared & Analyzed: 15-Oct-08   |                |      |          |      |       |        |      |            |     |       |
| рН                               | 6.48           |      | pH Units |      |       | 6.53   |      |            | 0.8 | 5     |
| Reference (8101079-SRM1)         |                |      |          |      |       |        |      |            |     |       |
| Prepared & Analyzed: 15-Oct-08   |                |      |          |      |       |        |      |            |     |       |
| рН                               | 7.04           |      | pH Units |      | 7.00  |        | 101  | 97.5-102.5 |     |       |
| Reference (8101079-SRM2)         |                |      |          |      |       |        |      |            |     |       |
| Prepared & Analyzed: 15-Oct-08   |                |      |          |      |       |        |      |            |     |       |
| pH                               | 7.00           |      | pH Units |      | 7.00  |        | 100  | 97.5-102.5 |     |       |
|                                  |                |      |          |      |       |        |      |            |     |       |

### **Notes and Definitions**

pHHT A hold time of 24 hours has been set to expedite the analyses through the laboratory. However, the hold time for pH is not specified within the method other than to state that the samples should be analyzed as soon as possible.

TOC This sample was analyzed in quadruplicate per method SW-846 9060. The % RPD is 104.5.

TOCa This sample was analyzed in quadruplicate per method SW-846 9060. The % RPD is 11.31.

- TOCb This sample was analyzed in quadruplicate per method SW-846 9060. The % RPD is 114.6.
- TOCc This sample was analyzed in quadruplicate per method SW-846 9060. The % RPD is 20.31.
- TOCd This sample was analyzed in quadruplicate per method SW-846 9060. The % RPD is 20.97.
- TOCe This sample was analyzed in quadruplicate per method SW-846 9060. The % RPD is 22.2.
- TOCf This sample was analyzed in quadruplicate per method SW-846 9060. The % RPD is 32.75.
- TOCg This sample was analyzed in quadruplicate per method SW-846 9060. The % RPD is 34.12.
- TOCh This sample was analyzed in quadruplicate per method SW-846 9060. The % RPD is 38.72.
- TOCi This sample was analyzed in quadruplicate per method SW-846 9060. The % RPD is 40.94.
- TOCj This sample was analyzed in quadruplicate per method SW-846 9060. The % RPD is 42.82.
- TOCk This sample was analyzed in quadruplicate per method SW-846 9060. The % RPD is 45.91.
- TOCI This sample was analyzed in quadruplicate per method SW-846 9060. The % RPD is 45.92.
- TOCm This sample was analyzed in quadruplicate per method SW-846 9060. The % RPD is 49.5.
- TOCn This sample was analyzed in quadruplicate per method SW-846 9060. The % RPD is 61.22.
- TOCo This sample was analyzed in quadruplicate per method SW-846 9060. The % RPD is 67.64.
- TOCp This sample was analyzed in quadruplicate per method SW-846 9060. The % RPD is 71.8.

BRL Below Reporting Limit - Analyte NOT DETECTED at or above the reporting limit

- dry Sample results reported on a dry weight basis
- NR Not Reported
- RPD Relative Percent Difference

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC.

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

<u>Reportable Detection Limit (RDL)</u>: The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

Validated by: Hanibal C. Tayeh, Ph.D.

| Montpelier, VT 05602<br>(802) 229-4600<br>Fax (802) 229-3876<br>WHITE - To accompany sample to the la<br>Manage From NEBS CUSTS in "printing sorvice" Consecution Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SAMPLE COLLECTOR<br>100 State Street, State 600 THE JOHNSON COMPANY, INC. | Relinquished by: (Signature)                                                                                                                                 | Heinguished by Algebra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VPN JCU-25-09 10/14/08 13:05                                                                                                                                                                                                                                    | Jup 1 |    |    |    |     |    |              | ă<br>N  | Sample No. /<br>Identification Date Time | Sampler: (Signature)     | Project No.                                            |                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|----|----|-----|----|--------------|---------|------------------------------------------|--------------------------|--------------------------------------------------------|-------------------------|
| Environmental Sciences and Engineering $5.7 \text{ Tc} \text{ k} \text{ Aga way, MA of or } \text{ WHITE}$ To accompany sample to the lab and returned to the Johnson Co. YELLOW - Lab copy PINK - Transporter copy work a first a framework we say that the second se | MPANY. INC                                                                |                                                                                                                                                              | in the second se | 6 3                                                                                                                                                                                                                                                             | 08    | 10 | 00 | So | 04  | 02 | 10 Patroarte | Passolo | Lab Sample<br>Number                     | Chain of Custody Tape No | Field Logbook No.                                      | СНА                     |
| 11 Af M Gren Dr<br>P Agawan, MA<br>Johnson Co. YELLOW-Lab copy E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ANALYTICAL LABORATORY<br>Spectrum Anclytical                              | Date Time P                                                                                                                                                  | 14/08 Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < <u></u> </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1/20</td> <td>&lt; II .</td> <td>Type of<br/>Sample</td> <td>ly Tape No.</td> <td>roject Location<br/>Tennelworth Fark D<br/>I Logbook No.</td> <td>CHAIN OF CUSTODY RECORD</td> |       |    |    |    |     |    | 1/20         | < II .  | Type of<br>Sample                        | ly Tape No.              | roject Location<br>Tennelworth Fark D<br>I Logbook No. | CHAIN OF CUSTODY RECORD |
| Dr<br>Dr<br>Opy PINK - Transporter copy GOLD - Sampler copy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tical 6                                                                   | Received for Laboratory: (Signature)                                                                                                                         | Received by: (Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ×                                                                                                                                                                                                                                                               |       |    | -  |    | × . |    | 1            | -       |                                          | Mar Part and a com       | 4                                                      | ORD                     |
| ler copy<br>The fea of seatoone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date Time<br>Shipper ID #<br>デモイ イス                                       | Date Time $\left( \frac{\partial}{\partial f_{1}} \right) = \left( \frac{\partial}{\partial f_{2}} \right) = \left( \frac{\partial}{\partial f_{2}} \right)$ | Date Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                 |       |    |    |    |     |    |              | REMARKS |                                          |                          |                                                        | 8223                    |

| 100 State Street, Suite 600<br>Manupedier, VT 05602<br>(802) 229-5876<br>Fax (802) 229-5876 | SAMPLE COLLECTOR            | Feiinquished by: (Signature)         | Rainquished by: (Signa   |          |   | 1 |   | 1217 560 55-12 10/14/14 | 11-25-01-11-11  | KPN-J10-55-10 10/14/08 | Sample No. /<br>Identification | Sampler: (Signature)      | 3-0700-11         | Client / Project Name |                         |
|---------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------|--------------------------|----------|---|---|---|-------------------------|-----------------|------------------------|--------------------------------|---------------------------|-------------------|-----------------------|-------------------------|
|                                                                                             |                             | ature)                               | Julie                    |          |   | 1 |   | -                       |                 |                        | Date                           |                           | 1                 | 10 A.                 |                         |
| THE JOHNSON COMPANY, INC<br>Environmental Sciences and Engineering                          |                             |                                      |                          |          |   |   | 2 | 10:20                   | 16:55           |                        | Time                           |                           |                   |                       |                         |
|                                                                                             |                             |                                      |                          |          |   |   | 2 |                         | 12              | SARSALO9-11            | Lab Sample<br>Number           |                           |                   | 7                     |                         |
| THE JOHNSON COMPANY, INC.<br>Environmental Sciences and Engineering<br>5.7 ICe Ag           |                             |                                      |                          |          |   |   |   | <u>c</u>                |                 |                        | а<br>                          | Chain of Custody Tape No. | Field Logoook No. | Ren Nelwor            | CHAIN                   |
| ST ST                                                                                       | Uisposed of by: (Signature) | Date                                 | 4/08                     |          |   |   |   |                         |                 | 51                     | Type of<br>Sample              | Tape No.                  | NO.               | with                  | CHAIN OF CUSTODY RECORD |
| Hydrian Malytical<br>11 Almgren Dr<br>Agawan, MA 01001                                      | y: (Signature)              | R                                    | 3                        |          |   |   |   |                         |                 | 11<br>1<br>1<br>1      |                                |                           |                   | Park D                | DY RECO                 |
| Analy<br>MP                                                                                 |                             | Bald H                               | Received by: (Signature) |          |   | / | - | ×                       | < ><br>< >      | X                      | TOC                            | A WIN                     | Amto              |                       | HU                      |
| h'eal<br>01001                                                                              | 5                           | Received for Laboratory: (Signature) | Signature)               |          |   | / |   |                         |                 | -                      |                                |                           | N.J.              |                       |                         |
|                                                                                             |                             | ignature)                            |                          |          | 1 |   |   |                         |                 | Ņ                      |                                |                           |                   | ANALYZES              | SARSqual                |
| •                                                                                           |                             |                                      |                          |          | 4 |   |   |                         | , <sup>89</sup> |                        |                                |                           |                   | ES                    | 1 Part                  |
| Fred EX                                                                                     | Date                        | Date                                 | Date                     |          |   |   |   |                         |                 | -                      | REMARKS                        |                           |                   |                       | 200                     |
|                                                                                             | Ime                         | Time                                 | Time                     |          |   |   | 7 |                         |                 |                        | 8                              |                           |                   |                       | 8224                    |
|                                                                                             |                             | 1                                    |                          | <br>, ** |   |   |   | *                       |                 |                        | :                              | 2                         |                   |                       |                         |

-0 fedex.com 1.800.GoFedEx 1.800.463.3339 3 To Recipients Scotter 2 Recipients Address Your Internal Billing Reference Company Ş Address Sendar's Name From arduor Dete Mannt 80/14/08 OIX. UND CHO Dis Dela no 8 Express 120.29 010 tru Palior State el Perdia Rotations, print Perdia address US Airbill R 8674 9945 0427 Jehnsen Fe cievan Gorne aren W n Ś ł + 0700-11 14.49 BPL n State 0 A W \* 6  $\leq$ Phone 7 Phon 0 달 516 딯 8 82 5466 10010 2 - 684 0.057D-542 209. Dept/Files/Subs/Room Dept.Roomburg.Roo 0427 1018 SATURDAY Delivery 8 Residential Delivery Signature Options reconstruction FedEx Envelope\* Б cn, 4b Express Freight Service No Signature Required 4a Express Package Service 3 Packaging FedEx (Day Freight\* Net bases and be conversion to FodEx 2Day Second backets day \* Thursday Special Handlin "ayment Bitter Dues this shipment 1 ा हहा। Hucipient 0200 Direct Signature domonal seriators others any sign to dolvery. Fre applies FedEx Pak\* briter hudEx at FedEx Location i i i FedEx 2Day Fruight Second business day.<sup>47</sup> Purslay Second well to believed an Monthy 50005 cns Third Party 601. No. or Divisit Card No. FedEx Express Save Third balance of Tarata fectarie a higher value. See back for depaid PedewStandard D L Hope hrha, Bax united Signature MIT 1000, 10 Doylee Doyles, A UNISE Credit Card Feder HOLD Seture . Cargo Alircraft Only Packages over 150 fbs. FedEx 3Day Freight The tangent out Samery below y 107 evideos FedEx First Overnight bolies we have a convert deliver to several colors," Service delivery All'I matala Packages up to 150 lbs A Girant of Indirates 520 Cash/Check Dwitt Carol Auch. Xoner i, 0 eccc.cap.oo81 x3be3o2.0081, moo.xaba3



Final Report
 Re-Issued Report
 Revised Report

SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

#### Laboratory Report

Project: Kennelworth Park - DC Project 3-0700-11

Johnson Company 100 State Street, Suite 600 Montpelier, VT 05602 Attn: Bob Osborne

| Laboratory ID | Client Sample ID  | Matrix | Date Sampled    | Date Received   |
|---------------|-------------------|--------|-----------------|-----------------|
| SA86050-01    | KPS-JCO-SS-01     | Soil   | 15-Oct-08 10:05 | 16-Oct-08 10:20 |
| SA86050-02    | KPS-JCO-SS-02     | Soil   | 15-Oct-08 10:15 | 16-Oct-08 10:20 |
| SA86050-03    | KPS-JCO-SS-03     | Soil   | 15-Oct-08 10:25 | 16-Oct-08 10:20 |
| SA86050-04    | KPS-JCO-SS-04     | Soil   | 15-Oct-08 10:00 | 16-Oct-08 10:20 |
| SA86050-05    | KPS-JCO-SS-05     | Soil   | 15-Oct-08 11:00 | 16-Oct-08 10:20 |
| SA86050-06    | KPS-JCO-SS-06     | Soil   | 15-Oct-08 09:50 | 16-Oct-08 10:20 |
| SA86050-07    | KPS-JCO-SS-07     | Soil   | 15-Oct-08 10:55 | 16-Oct-08 10:20 |
| SA86050-08    | KPS-JCO-SS-08     | Soil   | 15-Oct-08 09:36 | 16-Oct-08 10:20 |
| SA86050-09    | KPS-JCO-SS-09     | Soil   | 15-Oct-08 09:45 | 16-Oct-08 10:20 |
| SA86050-10    | KPS-JCO-SS-10     | Soil   | 15-Oct-08 11:05 | 16-Oct-08 10:20 |
| SA86050-11    | KPS-JCO-SS-10-Dup | Soil   | 15-Oct-08 11:05 | 16-Oct-08 10:20 |
| SA86050-12    | KPS-JCO-SS-11     | Soil   | 15-Oct-08 11:15 | 16-Oct-08 10:20 |

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes.

Please note that this report contains 9 pages of analytical data plus Chain of Custody document(s).

This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98

USDA # S-51435

Vermont # VT-11393



Authorized by:

Hanibal C. Tayeh, Ph.D. President/Laboratory Director

Technical Reviewer's Initial:



Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

| Sample Identification<br>KPS-JCO-SS-01<br>SA86050-01 |        |      | <u>nt Project #</u><br>0700-11 |      | <u>Matrix</u><br>Soil |              | on Date/Tim<br>t-08 10:05        | <u>e</u>           | <u>Received</u><br>16-Oct-0 | -     |
|------------------------------------------------------|--------|------|--------------------------------|------|-----------------------|--------------|----------------------------------|--------------------|-----------------------------|-------|
| CAS No. Analyte(s)                                   | Result | Flag | Units                          | *RDL | Dilution              | Method Ref.  | Prepared                         | Analyzed           | Batch                       | Cert. |
| General Chemistry Parameters                         |        |      |                                |      |                       |              |                                  |                    |                             |       |
| Total Organic Carbon                                 | 7,660  | TOCf | mg/kg                          | 100  | 1                     | SW846 9060   | 21-Oct-08                        | 21-Oct-08          | 8101530                     |       |
| Toxicity Characteristics                             | 7.56   | pHHT | pH Units                       |      | 1                     | SW846 9045C  | 16-Oct-08                        | 16-Oct-08          | 8101103                     | х     |
| рН                                                   | 1.50   | pinn | prionita                       |      | •                     | 011040 00400 | 13:31                            | 13:48              | 0101100                     | Χ     |
| Sample Identification<br>KPS-JCO-SS-02               |        |      | nt Project #                   |      | <u>Matrix</u>         |              | on Date/Tim                      |                    | Received                    |       |
| SA86050-02                                           |        | 3-   | 0700-11                        |      | Soil                  | 15-Oc        | t-08 10:15                       |                    | 16-Oct-0                    | 8     |
| CAS No. Analyte(s)                                   | Result | Flag | Units                          | *RDL | Dilution              | Method Ref.  | Prepared                         | Analyzed           | Batch                       | Cert. |
| General Chemistry Parameters                         |        |      |                                |      |                       |              |                                  |                    |                             |       |
| Total Organic Carbon<br>Toxicity Characteristics     | 13,000 | TOCa | mg/kg                          | 100  | 1                     | SW846 9060   | 21-Oct-08                        | 21-Oct-08          | 8101530                     |       |
| pH                                                   | 6.90   | pHHT | pH Units                       |      | 1                     | SW846 9045C  | 16-Oct-08<br>13:31               | 16-Oct-08<br>13:48 | 8101193                     | х     |
| Sample Identification<br>KPS-JCO-SS-03               |        |      | <u>nt Project #</u><br>0700-11 |      | <u>Matrix</u><br>Soil |              | on Date/Tim<br>t-08 10:25        | <u>e</u>           | Received                    |       |
| SA86050-03                                           |        |      |                                |      |                       |              |                                  |                    |                             |       |
| CAS No. Analyte(s)                                   | Result | Flag | Units                          | *RDL | Dilution              | Method Ref.  | Prepared                         | Analyzed           | Batch                       | Cert. |
| General Chemistry Parameters                         |        |      |                                |      |                       |              |                                  |                    |                             |       |
| Total Organic Carbon<br>Toxicity Characteristics     | 18,500 | TOCm | mg/kg                          | 100  | 1                     | SW846 9060   | 21-Oct-08                        | 21-Oct-08          | 8101530                     |       |
| рН                                                   | 6.99   | рННТ | pH Units                       |      | 1                     | SW846 9045C  | 16-Oct-08<br>13:31               | 16-Oct-08<br>13:49 | 8101193                     | Х     |
| Sample Identification<br>KPS-JCO-SS-04<br>SA86050-04 |        |      | <u>nt Project #</u><br>0700-11 |      | <u>Matrix</u><br>Soil |              | on Date/Tim<br>t-08 10:00        | <u>e</u>           | <u>Received</u><br>16-Oct-0 | -     |
| CAS No. Analyte(s)                                   | Result | Flag | Units                          | *RDL | Dilution              | Method Ref.  | Prepared                         | Analyzed           | Batch                       | Cert. |
| General Chemistry Parameters                         |        |      |                                |      |                       |              |                                  |                    |                             |       |
| Total Organic Carbon<br>Toxicity Characteristics     | 2,640  | TOCc | mg/kg                          | 100  | 1                     | SW846 9060   | 21-Oct-08                        | 21-Oct-08          | 8101530                     |       |
| рН                                                   | 7.29   | pHHT | pH Units                       |      | 1                     | SW846 9045C  | 16-Oct-08<br>13:31               | 16-Oct-08<br>13:50 | 8101193                     | х     |
| Sample Identification<br>KPS-JCO-SS-05<br>SA86050-05 |        |      | <u>nt Project #</u><br>0700-11 |      | <u>Matrix</u><br>Soil |              | <u>on Date/Tim</u><br>t-08 11:00 | <u>e</u>           | <u>Received</u><br>16-Oct-0 |       |
| CAS No. Analyte(s)                                   | Result | Flag | Units                          | *RDL | Dilution              | Method Ref.  | Prepared                         | Analyzed           | Batch                       | Cert. |
| General Chemistry Parameters                         |        | 0    |                                |      |                       | - <b>J</b> - |                                  |                    |                             |       |
| Total Organic Carbon<br>Toxicity Characteristics     | 5,820  | TOCd | mg/kg                          | 100  | 1                     | SW846 9060   | 21-Oct-08                        | 21-Oct-08          | 8101530                     |       |
| pH                                                   | 7.27   | pHHT | pH Units                       |      | 1                     | SW846 9045C  | 16-Oct-08<br>13:31               | 16-Oct-08<br>13:51 | 8101193                     | х     |

This laboratory report is not valid without an authorized signature on the cover page.

| Sample Identification<br>KPS-JCO-SS-06<br>SA86050-06 |         |      | <u>nt Project #</u><br>0700-11 |      | <u>Matrix</u><br>Soil |             | on Date/Tim<br>t-08 09:50         | <u>e</u>           | <u>Received</u><br>16-Oct-0 |       |
|------------------------------------------------------|---------|------|--------------------------------|------|-----------------------|-------------|-----------------------------------|--------------------|-----------------------------|-------|
| CAS No. Analyte(s)                                   | Result  | Flag | Units                          | *RDL | Dilution              | Method Ref. | Prepared                          | Analyzed           | Batch                       | Cert. |
| General Chemistry Parameters                         |         |      |                                |      |                       |             |                                   |                    |                             |       |
| Total Organic Carbon<br>Toxicity Characteristics     | 2,920   | TOCI | mg/kg                          | 100  | 1                     | SW846 9060  | 21-Oct-08                         | 21-Oct-08          | 8101530                     |       |
| pH                                                   | 7.22    | рННТ | pH Units                       |      | 1                     | SW846 9045C | 16-Oct-08<br>13:31                | 16-Oct-08<br>13:52 | 8101193                     | х     |
| Sample Identification<br>KPS-JCO-SS-07<br>SA86050-07 |         |      | <u>nt Project #</u><br>0700-11 |      | <u>Matrix</u><br>Soil |             | on Date/Tim<br>t-08 10:55         | <u>e</u>           | Received<br>16-Oct-0        |       |
| CAS No. Analyte(s)                                   | Result  | Flag | Units                          | *RDL | Dilution              | Method Ref. | Prepared                          | Analyzed           | Batch                       | Cert. |
| General Chemistry Parameters                         |         |      |                                |      |                       |             |                                   |                    |                             |       |
| Total Organic Carbon<br>Toxicity Characteristics     | 11,600  | TOCh | mg/kg                          | 100  | 1                     | SW846 9060  | 22-Oct-08                         | 22-Oct-08          | 8101604                     |       |
| pH                                                   | 7.04    | рННТ | pH Units                       |      | 1                     | SW846 9045C | 16-Oct-08<br>13:31                | 16-Oct-08<br>13:52 | 8101193                     | х     |
| Sample Identification<br>KPS-JCO-SS-08<br>SA86050-08 |         |      | <u>nt Project #</u><br>0700-11 |      | <u>Matrix</u><br>Soil |             | on <u>Date/Tim</u><br>t-08 09:36  | <u>e</u>           | Received<br>16-Oct-0        |       |
| CAS No. Analyte(s)                                   | Result  | Flag | Units                          | *RDL | Dilution              | Method Ref. | Prepared                          | Analyzed           | Batch                       | Cert. |
| General Chemistry Parameters                         |         |      |                                |      |                       |             | -                                 |                    |                             |       |
| Total Organic Carbon<br>Toxicity Characteristics     | 60,500  | TOCj | mg/kg                          | 100  | 1                     | SW846 9060  | 23-Oct-08                         | 23-Oct-08          | 8101788                     |       |
| рН                                                   | 6.87    | рННТ | pH Units                       |      | 1                     | SW846 9045C | 16-Oct-08<br>13:31                | 16-Oct-08<br>13:53 | 8101193                     | х     |
| Sample Identification<br>KPS-JCO-SS-09<br>SA86050-09 |         | -    | <u>nt Project #</u><br>0700-11 |      | <u>Matrix</u><br>Soil |             | on Date/Tim<br>t-08 09:45         | <u>e</u>           | <u>Received</u><br>16-Oct-0 | -     |
| CAS No. Analyte(s)                                   | Result  | Flag | Units                          | *RDL | Dilution              | Method Ref. | Prepared                          | Analyzed           | Batch                       | Cert. |
| General Chemistry Parameters                         |         |      |                                |      |                       |             |                                   |                    |                             |       |
| Total Organic Carbon<br>Toxicity Characteristics     | 175,000 | TOCb | mg/kg                          | 100  | 1                     | SW846 9060  | 22-Oct-08                         | 22-Oct-08          | 8101604                     |       |
| рН                                                   | 6.77    | рННТ | pH Units                       |      | 1                     | SW846 9045C | 16-Oct-08<br>13:31                | 16-Oct-08<br>13:53 | 8101193                     | Х     |
| Sample Identification<br>KPS-JCO-SS-10<br>SA86050-10 |         |      | <u>nt Project #</u><br>0700-11 |      | <u>Matrix</u><br>Soil |             | o <u>n Date/Tim</u><br>t-08 11:05 | <u>e</u>           | <u>Received</u><br>16-Oct-0 | -     |
| CAS No. Analyte(s)                                   | Result  | Flag | Units                          | *RDL | Dilution              | Method Ref. | Prepared                          | Analyzed           | Batch                       | Cert. |
| General Chemistry Parameters                         |         |      |                                |      |                       |             |                                   |                    |                             |       |
| Total Organic Carbon<br>Toxicity Characteristics     | 3,940   | TOCo | mg/kg                          | 100  | 1                     | SW846 9060  | 22-Oct-08                         | 22-Oct-08          | 8101604                     |       |
| рН                                                   | 7.29    | рННТ | pH Units                       |      | 1                     | SW846 9045C | 16-Oct-08<br>13:31                | 16-Oct-08<br>13:54 | 8101193                     | х     |

This laboratory report is not valid without an authorized signature on the cover page.

| Sample Identification<br>KPS-JCO-SS-10-Dup<br>SA86050-11 |        |      | <u>nt Project #</u><br>0700-11 |      | <u>Matrix</u><br>Soil |             | on Date/Time<br>t-08 11:05 | <u>e</u>           | <u>Received</u><br>16-Oct-0 | -     |
|----------------------------------------------------------|--------|------|--------------------------------|------|-----------------------|-------------|----------------------------|--------------------|-----------------------------|-------|
| CAS No. Analyte(s)                                       | Result | Flag | Units                          | *RDL | Dilution              | Method Ref. | Prepared                   | Analyzed           | Batch                       | Cert. |
| General Chemistry Parameters                             |        |      |                                |      |                       |             |                            |                    |                             |       |
| Total Organic Carbon<br>Toxicity Characteristics         | 3,700  | TOCi | mg/kg                          | 100  | 1                     | SW846 9060  | 22-Oct-08                  | 22-Oct-08          | 8101604                     |       |
| рН                                                       | 7.27   | рННТ | pH Units                       |      | 1                     | SW846 9045C | 16-Oct-08<br>13:31         | 16-Oct-08<br>13:54 | 8101193                     | Х     |
| Sample Identification<br>KPS-JCO-SS-11<br>SA86050-12     |        |      | <u>nt Project #</u><br>0700-11 |      | <u>Matrix</u><br>Soil |             | on Date/Time<br>t-08 11:15 | <u>e</u>           | <u>Receive</u><br>16-Oct-0  | _     |
| CAS No. Analyte(s)                                       | Result | Flag | Units                          | *RDL | Dilution              | Method Ref. | Prepared                   | Analyzed           | Batch                       | Cert. |
| General Chemistry Parameters                             |        |      |                                |      |                       |             |                            |                    |                             |       |
| Total Organic Carbon<br>Toxicity Characteristics         | 2,050  | TOCg | mg/kg                          | 100  | 1                     | SW846 9060  | 22-Oct-08                  | 22-Oct-08          | 8101604                     |       |
| рН                                                       | 7.37   | pHHT | pH Units                       |      | 1                     | SW846 9045C | 16-Oct-08<br>13:31         | 16-Oct-08<br>13:55 | 8101193                     | х     |

## **General Chemistry Parameters - Quality Control**

|                                                        | D k             | E1   | <b>T</b> T <b>*</b> | *0.01 | Spike | Source | A/DEC | %REC        | DDD | RPD   |
|--------------------------------------------------------|-----------------|------|---------------------|-------|-------|--------|-------|-------------|-----|-------|
| Analyte(s)                                             | Result          | Flag | Units               | *RDL  | Level | Result | %REC  | Limits      | RPD | Limit |
| Batch 8101530 - General Preparation                    |                 |      |                     |       |       |        |       |             |     |       |
| Blank (8101530-BLK1)                                   |                 |      |                     |       |       |        |       |             |     |       |
| Prepared & Analyzed: 21-Oct-08                         |                 |      |                     |       |       |        |       |             |     |       |
| Total Organic Carbon                                   | BRL             |      | mg/kg               | 100   |       |        |       |             |     |       |
| Calibration Blank (8101530-CCB1)                       |                 |      |                     |       |       |        |       |             |     |       |
| Prepared & Analyzed: 21-Oct-08                         |                 |      |                     |       |       |        |       |             |     |       |
| Total Organic Carbon                                   | 14.6            |      | mg/kg               |       |       |        |       |             |     |       |
| Calibration Blank (8101530-CCB2)                       |                 |      |                     |       |       |        |       |             |     |       |
| Prepared & Analyzed: 21-Oct-08                         |                 |      |                     |       |       |        |       |             |     |       |
| Total Organic Carbon                                   | -1.70           |      | mg/kg               |       |       |        |       |             |     |       |
| Calibration Check (8101530-CCV1)                       |                 |      |                     |       |       |        |       |             |     |       |
| Prepared & Analyzed: 21-Oct-08                         |                 |      |                     |       |       |        |       |             |     |       |
| Total Organic Carbon                                   | 980             |      | mg/kg               |       | 1000  |        | 98    | 85-115      |     |       |
| Calibration Check (8101530-CCV2)                       |                 |      |                     |       |       |        |       |             |     |       |
| Prepared & Analyzed: 21-Oct-08                         |                 |      |                     |       |       |        |       |             |     |       |
| Total Organic Carbon                                   | 7950            |      | mg/kg               |       | 8000  |        | 99    | 85-115      |     |       |
| Calibration Check (8101530-CCV3)                       |                 |      |                     |       |       |        |       |             |     |       |
| Prepared & Analyzed: 21-Oct-08                         |                 |      |                     |       |       |        |       |             |     |       |
| Total Organic Carbon                                   | 1010            |      | mg/kg               |       | 1000  |        | 101   | 85-115      |     |       |
| Calibration Check (8101530-CCV4)                       |                 |      |                     |       |       |        |       |             |     |       |
| Prepared & Analyzed: 21-Oct-08                         |                 |      |                     |       |       |        |       |             |     |       |
| Total Organic Carbon                                   | 7860            |      | mg/kg               |       | 8000  |        | 98    | 85-115      |     |       |
| Duplicate (8101530-DUP1)                               | Source: SA85969 | a_12 |                     |       |       |        |       |             |     |       |
| Prepared & Analyzed: 21-Oct-08                         | Source. SA0090  | -12  |                     |       |       |        |       |             |     |       |
| Total Organic Carbon                                   | 7820            | TOC  | mg/kg               | 100   |       | 8420   |       |             | 7   | 20    |
| Reference (8101530-SRM1)                               |                 |      |                     |       |       |        |       |             |     |       |
| Prepared & Analyzed: 21-Oct-08                         |                 |      |                     |       |       |        |       |             |     |       |
| Total Organic Carbon                                   | 2310            |      | mg/kg               | 100   | 2490  |        | 93    | 37.35-180.7 |     |       |
| Batch 8101604 - General Preparation                    |                 |      |                     |       |       |        |       |             |     |       |
|                                                        |                 |      |                     |       |       |        |       |             |     |       |
| Blank (8101604-BLK1)                                   |                 |      |                     |       |       |        |       |             |     |       |
| Prepared & Analyzed: 22-Oct-08<br>Total Organic Carbon | BRL             |      | mg/kg               | 100   |       |        |       |             |     |       |
| -                                                      | DILL            |      | iiig/kg             | 100   |       |        |       |             |     |       |
| Calibration Blank (8101604-CCB1)                       |                 |      |                     |       |       |        |       |             |     |       |
| Prepared & Analyzed: 22-Oct-08<br>Total Organic Carbon | -4.63           |      | ma/ka               |       |       |        |       |             |     |       |
| -                                                      | -4.05           |      | mg/kg               |       |       |        |       |             |     |       |
| Calibration Blank (8101604-CCB2)                       |                 |      |                     |       |       |        |       |             |     |       |
| Prepared & Analyzed: 22-Oct-08                         | 0.476           |      | mc/kc               |       |       |        |       |             |     |       |
| Total Organic Carbon                                   | -0.176          |      | mg/kg               |       |       |        |       |             |     |       |
| Calibration Check (8101604-CCV1)                       |                 |      |                     |       |       |        |       |             |     |       |
| Prepared & Analyzed: 22-Oct-08                         | 4000            |      |                     |       | 4000  |        | 400   |             |     |       |
| Total Organic Carbon                                   | 1000            |      | mg/kg               |       | 1000  |        | 100   | 85-115      |     |       |
| Calibration Check (8101604-CCV2)                       |                 |      |                     |       |       |        |       |             |     |       |
| Prepared & Analyzed: 22-Oct-08                         |                 |      |                     |       |       |        |       |             |     |       |
| Total Organic Carbon                                   | 7910            |      | mg/kg               |       | 8000  |        | 99    | 85-115      |     |       |
| Calibration Check (8101604-CCV3)                       |                 |      |                     |       |       |        |       |             |     |       |
| Prepared & Analyzed: 22-Oct-08                         |                 |      |                     |       |       |        |       |             |     |       |
| Total Organic Carbon                                   | 1090            |      | mg/kg               |       | 1000  |        | 109   | 85-115      |     |       |

This laboratory report is not valid without an authorized signature on the cover page.

\* Reportable Detection Limit BRL = Below Reporting Limit

## **General Chemistry Parameters - Quality Control**

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |              |       |      | Spike | Source |      | %REC        |     | RPD   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|-------|------|-------|--------|------|-------------|-----|-------|
| Analyte(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Result          | Flag         | Units | *RDL | Level | Result | %REC | Limits      | RPD | Limit |
| Batch 8101604 - General Preparation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |       |      |       |        |      |             |     |       |
| Calibration Check (8101604-CCV3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |              |       |      |       |        |      |             |     |       |
| Prepared & Analyzed: 22-Oct-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |              |       |      |       |        |      |             |     |       |
| Calibration Check (8101604-CCV4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |              |       |      |       |        |      |             |     |       |
| Prepared & Analyzed: 22-Oct-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |              |       |      |       |        |      |             |     |       |
| Total Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8060            |              | mg/kg |      | 8000  |        | 101  | 85-115      |     |       |
| Duplicate (8101604-DUP1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Source: SA86050 | D-11         |       |      |       |        |      |             |     |       |
| Prepared & Analyzed: 22-Oct-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |              |       |      |       |        |      |             |     |       |
| Total Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5220            | QR5,<br>TOCn | mg/kg | 100  |       | 3700   |      |             | 34  | 20    |
| Duplicate (8101604-DUP2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Source: SA86050 | 0-12         |       |      |       |        |      |             |     |       |
| Prepared & Analyzed: 22-Oct-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |              |       |      |       |        |      |             |     |       |
| Total Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2140            | TOCk         | mg/kg | 100  |       | 2050   |      |             | 4   | 20    |
| Reference (8101604-SRM1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |              |       |      |       |        |      |             |     |       |
| Prepared & Analyzed: 22-Oct-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |              |       |      |       |        |      |             |     |       |
| Total Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2360            |              | mg/kg | 100  | 2490  |        | 95   | 37.35-180.7 |     |       |
| Batch 8101788 - General Preparation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |       |      |       |        |      |             |     |       |
| Blank (8101788-BLK1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |              |       |      |       |        |      |             |     |       |
| Prepared & Analyzed: 23-Oct-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |              |       |      |       |        |      |             |     |       |
| Total Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BRL             |              | mg/kg | 100  |       |        |      |             |     |       |
| Calibration Blank (8101788-CCB1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |              |       |      |       |        |      |             |     |       |
| Prepared & Analyzed: 23-Oct-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |              |       |      |       |        |      |             |     |       |
| Total Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -37.0           |              | mg/kg |      |       |        |      |             |     |       |
| Calibration Blank (8101788-CCB2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |              |       |      |       |        |      |             |     |       |
| Prepared & Analyzed: 23-Oct-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |              |       |      |       |        |      |             |     |       |
| Total Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.548          |              | mg/kg |      |       |        |      |             |     |       |
| Calibration Check (8101788-CCV1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |              |       |      |       |        |      |             |     |       |
| Prepared & Analyzed: 23-Oct-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |              |       |      |       |        |      |             |     |       |
| Total Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7590            |              | mg/kg |      | 8000  |        | 95   | 85-115      |     |       |
| Calibration Check (8101788-CCV2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |              |       |      |       |        |      |             |     |       |
| Prepared & Analyzed: 23-Oct-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |              |       |      |       |        |      |             |     |       |
| Total Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18100           |              | mg/kg |      | 20000 |        | 91   | 85-115      |     |       |
| , and the second s |                 |              | 5.5   |      |       |        |      |             |     |       |
| Calibration Check (8101788-CCV3) Prepared & Analyzed: 23-Oct-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |              |       |      |       |        |      |             |     |       |
| Total Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7810            |              | mg/kg |      | 8000  |        | 98   | 85-115      |     |       |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |              | 5.5   |      |       |        |      |             |     |       |
| Calibration Check (8101788-CCV4) Prepared & Analyzed: 23-Oct-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |              |       |      |       |        |      |             |     |       |
| Total Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18200           |              | mg/kg |      | 20000 |        | 91   | 85-115      |     |       |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Source: SA86050 | 1-08         | 33    |      |       |        |      |             |     |       |
| Duplicate (8101788-DUP1)<br>Prepared & Analyzed: 23-Oct-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Source: 5A86050 | -00          |       |      |       |        |      |             |     |       |
| Total Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70200           | TOCe         | mg/kg | 100  |       | 60500  |      |             | 15  | 20    |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10200           | 1000         | y/ny  | 100  |       | 00000  |      |             | 10  | 20    |
| Reference (8101788-SRM1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |              |       |      |       |        |      |             |     |       |
| Prepared & Analyzed: 23-Oct-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4440            |              | mall  | 100  | 2400  |        | 477  | 27 25 400 7 |     |       |
| Total Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4410            |              | mg/kg | 100  | 2490  |        | 177  | 37.35-180.7 |     |       |

This laboratory report is not valid without an authorized signature on the cover page.

## **Toxicity Characteristics - Quality Control**

|                                  |                 |      |          |      | Spike | Source |      | %REC       |     | RPD   |
|----------------------------------|-----------------|------|----------|------|-------|--------|------|------------|-----|-------|
| Analyte(s)                       | Result          | Flag | Units    | *RDL | Level | Result | %REC | Limits     | RPD | Limit |
| Batch 8101193 - General Preparat | ion             |      |          |      |       |        |      |            |     |       |
| Duplicate (8101193-DUP1)         | Source: SA85089 | 9-19 |          |      |       |        |      |            |     |       |
| Prepared & Analyzed: 16-Oct-08   |                 |      |          |      |       |        |      |            |     |       |
| рН                               | 8.63            |      | pH Units |      |       | 8.67   |      |            | 0.5 | 5     |
| Reference (8101193-SRM1)         |                 |      |          |      |       |        |      |            |     |       |
| Prepared & Analyzed: 16-Oct-08   |                 |      |          |      |       |        |      |            |     |       |
| рН                               | 7.10            |      | pH Units |      | 7.00  |        | 101  | 97.5-102.5 |     |       |
| Reference (8101193-SRM2)         |                 |      |          |      |       |        |      |            |     |       |
| Prepared & Analyzed: 16-Oct-08   |                 |      |          |      |       |        |      |            |     |       |
| pН                               | 7.10            |      | pH Units |      | 7.00  |        | 101  | 97.5-102.5 |     |       |

This laboratory report is not valid without an authorized signature on the cover page.

#### **Notes and Definitions**

- pHHT A hold time of 24 hours has been set to expedite the analyses through the laboratory. However, the hold time for pH is not specified within the method other than to state that the samples should be analyzed as soon as possible.
- QR5 RPD out of acceptance range.
- TOC This sample was analyzed in quadruplicate per method SW-846 9060. The % RPD is 11.31.
- TOCa This sample was analyzed in quadruplicate per method SW-846 9060. The % RPD is 15.33.
- TOCb This sample was analyzed in quadruplicate per method SW-846 9060. The % RPD is 19.01.
- TOCc This sample was analyzed in quadruplicate per method SW-846 9060. The % RPD is 20.75.
- TOCd This sample was analyzed in quadruplicate per method SW-846 9060. The % RPD is 24.15.
- TOCe This sample was analyzed in quadruplicate per method SW-846 9060. The % RPD is 27.99.
- TOCf This sample was analyzed in quadruplicate per method SW-846 9060. The % RPD is 29.66.
- TOCg This sample was analyzed in quadruplicate per method SW-846 9060. The % RPD is 3.8.
- TOCh This sample was analyzed in quadruplicate per method SW-846 9060. The % RPD is 32.5.
- TOCi This sample was analyzed in quadruplicate per method SW-846 9060. The % RPD is 34.42.
- TOCj This sample was analyzed in quadruplicate per method SW-846 9060. The % RPD is 35.93.
- TOCk This sample was analyzed in quadruplicate per method SW-846 9060. The % RPD is 45.7.
- TOCI This sample was analyzed in quadruplicate per method SW-846 9060. The % RPD is 47.43.
- TOCm This sample was analyzed in quadruplicate per method SW-846 9060. The % RPD is 53.72.
- TOCn This sample was analyzed in quadruplicate per method SW-846 9060. The % RPD is 54.18.
- TOCo This sample was analyzed in quadruplicate per method SW-846 9060. The % RPD is 91.48.
- BRL Below Reporting Limit Analyte NOT DETECTED at or above the reporting limit
- dry Sample results reported on a dry weight basis
- NR Not Reported
- RPD Relative Percent Difference

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC.

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

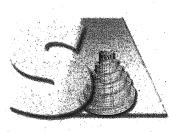
<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

<u>Reportable Detection Limit (RDL)</u>: The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

Validated by: Hanibal C. Tayeh, Ph.D. June O'Connor

This laboratory report is not valid without an authorized signature on the cover page.


SAMPLE COLLECTOR Sample Disposal Method: Relinquished by: (Signature) KPS-Jco-55-06 KPS-J10-5-03 KPSJCO-SS DZ Sampler: (Signature Client / Project Name to-ss-ort-st KPS-Jco-SS-08 Project No (75-JW-55-05 KPS-JCO-SS-04 TPS-Jco-SS-0110/15/0210:05 (PS-JW-SS-3-0700-11 10-Dr- 35-02-54 200 State Street, Suite 600 Iquished by Sample No. / Identification SdN NEBS CUSTERN "printing service 1-300-888-8327 Montpelier, VT 05602 Fax (802) 229-5876 (802) 229-4600 Surger S THE JOHNSON COMPANY, INC 18/15/06 WHITE - To accompany sample to the lab and returned to the Johnson Co. YELLOW - Lab copy PINK - Transporter copy GOLD - Sampler copy **Environmental Sciences and Engineering** Date 10:55 9:50 10:25 9:36 11:00 00:00 10:15 9:45 Fig 50:11 Time AD Pa 86050-0 Lab Sample Number ٨ 2 :09 Chain of Custody Tape No. S 9 R 2 Field Logbook No. 2 6 R 8228 Project Location Kenndworth Furt CHAIN OF CUSTODY RECORD 10/15/08/8:30 ANALYTICAL LABORATORY Spectrum Analytical Date Disposed of by: (Signature) Soils 5/105 Il Almgren Dr. Ngawan, MA Olcol Type of Sample Time Received by: (Signature, Received ter Daboratory: (Sig **k**× XX × × \* × 3 00 × イ 4 × × × FIA < × × ×  $\prec$ × X D B ANALYZES RH 860500 Shippey ID # Date Date Date REMARKS 7. 8225 0 Time Time 10:20 A) emi

## **APPENDIX 7**

## LABORATORY TOC AND PH STANDARD OPERATING PROCEDURES



NY Lab #11393/11840 FL Lab # E87600/E87936



Revision No. 8 Date: 11-17-08 Page 1 of 14

## UNCONTROLLED COPY

## SPECTRUM ANALYTICAL, INC

Featuring Hanibal Technology 11 Almgren Drive Agawam, MA 01001

## STANDARD OPERATING PROCEDURE

For Total Organic and Inorganic Carbon SW846 9060 SM5310B

Prepared b Reviewed by

Lab Director

11-17-08

Date

11/-Date

F:\data\QAQC\NELAC SOPs\NELAC SOPs 2008\Wet Chemistry\SOP TOC SW846 9060 SM5310B Rev 8. 11-17-08.doc



FL Lab # E87600/E87936

Revision No. 8 Date: 11-17-08 Page 2 of 14

## TABLE OF CONTENTS STANDARD OPERATING PROCEDURE for TOTAL ORGANIC and INORGANIC CARBON By SW846 9060/SM5310B

| I.     | SCOPE AND APPLICATION                         | 4  |
|--------|-----------------------------------------------|----|
| II.    | SUMMARY OF METHOD                             | 4  |
| III.   | HEALTH & SAFETY                               | 4  |
| IV.    | INTERFERENCES                                 | 4  |
| V.     | REAGENTS                                      | 4  |
| VI.    | APPARATUS AND MATERIALS                       | 6  |
| VII.   | INSTRUMENT CALIBRATION                        | 6  |
| VIII.  | SAMPLE COLLECTION, PRESERVATION, AND HANDLING | 7  |
| IX.    | PROCEDURE                                     | 7  |
| X.     | DATA CALCULATION                              | 10 |
| XI.    | QUALITY CONTROL                               | 10 |
| XII.   | METHOD DETECTION LIMIT                        | 11 |
| XIII.  | METHOD PERFORMANCE                            | 11 |
| XIV.   | POLLUTION PREVENTION                          | 11 |
| XV.    | WASTE MANAGEMENT                              | 12 |
| XVI.   | ATTACHMENTS                                   | 13 |
| XVII.  | REFERENCES                                    | 13 |
| XVIII. | GLOSSARY                                      | 14 |



## I. SCOPE AND APPLICATION

- A. This method describes the measurement of total organic carbon (TOC) and inorganic carbon (IC) in various matrices:
   Drinking, surface water as well as in domestic, industrial aqueous wastes and soil or sludge.
- B. This method is used to determine the concentration of total organic and/or inorganic carbon in particulated suspensions, water solutions and solids including samples such as soil, mud and sediments.
- C. The instrument measurement range is 4ppbC to 25,000ppmC. These values vary with sample type and analysis conditions.

## II. SUMMARY OF METHOD

- A. This method provides the conditions for the detection of ppm levels of total organic carbon, inorganic carbon or total carbon by converting the various carbon forms to carbon dioxide by catalytic combustion.
- B. An infrared detector measures the carbon dioxide formed directly.
- C. The amount of carbon dioxide is directly proportional to the concentration of carbon in the sample.
- D. This method utilizes the external standard calibration technique to determine the carbon present. This is done by comparing the intensity of the sample absorbance to the response of the calibration standard.
- E. Total Organic Carbon (TOC) and Total Carbon (TC) analysis of soils, slurries, sediments, sludges, particulate-laden liquids, and other solids yield important insight in a variety of analytical applications. From quality assurance in chemical production to detection of contaminants in soils, this application could prove to be difficult without the proper equipment. Consequently, high temperature combustion oxidation with cobalt oxide as a catalyst and a CO2 specific Infrared detector is the method of choice. Most TOC analyzers, such as the Apollo 9000 from Tekmar-Dohrmann, are often used for this application since it has a reliable infrared detector and it can be easily interfaced to a combustion "boat" apparatus. (183 Boat sampling module)



Revision No. 8 Date: 11-17-08 Page 4 of 14

## III. HEALTH & SAFETY

To maintain the application of OSHA regulations regarding the safe handling of the chemicals specified in this method, the laboratory must follow proper safety procedures:

- A. All chemical solvents should be transported on a cart when moved from room to room.
- B. All analytical operations, such as digestions, must be performed under a hood expressly designed for acid use.
- C. Safety glasses, gloves and protective clothing must be worn when preparing standards and digesting samples.
- D. The analyst must wear safety glasses and take extra care when opening the gas cylinders or checking for leaks in the gas lines. (See Spectrum's chemical hygiene plan on using compressed gas cylinders.)
- E. The analyst must dispose of all unwanted chemicals and acids in properly marked containers inside the hood and chemical cabinets. (See Spectrum's waste disposal plan.)

#### **IV. INTERFERENCES**

- A. Carbonate and bicarbonate carbons are interferences and must be removed or accounted for. Removal of carbonate and bicarbonate by acidification and purging is completed prior to TOC analysis.
- B. Any particulate in the sample may clog the openings in the syringe and must be avoided.
- C. Samples may need to be homogenized in a blender or a mortar and pestle in order to be injected reproducibly into the instrument.

#### V. REAGENTS/ STANDARDS

#### A. Purchased

- 1. Carbon Standard, 1000 ppm. And 2000 ppm. Inorganic Carbon Standard, 1000 ppm
- 2. DI water used in preparation of standards and for diluting of samples should be ultra pure to reduce the carbon concentration of the blank.



Revision No. 8 Date: 11-17-08 Page 5 of 14

- NY Lab #11393/11840 FL Lab # E87600/E87936
  - 3. Sulfuric acid  $(H_2SO_4)$ : TraceMetal grade.
  - 4. Phosphoric acid: 25%.
  - 5. TOC SRM for soil/ water.
- B. Made In -House
  - 1. Total organic \ inorganic carbon working solution: 5 &15 ppm: with a glass pipette add 0.5 and 1.5 mLs respectively of 1000 PPM organic/ inorganic standard and dilute to 100 mL. <u>Prepare daily</u>.
  - 2. Total organic/inorganic carbon standard solutions for water: Prepare standard solutions of 0.5, 1, 5, 10, and 20 for applicable calibration curves.

| Final ppm per | Volume 1000  |
|---------------|--------------|
| 100 ml volume | ppm Standard |
| 20.0          | 2.0          |
| 10.0          | 1.0          |
| 5.0           | 0.5          |
| 1.0           | 0.1          |
| 0.5           | 0.05         |
| 0.0           | 0.0          |

3. Total organic carbon standard solutions for soil: 100, 500, 1000, 2000, 4000, 8000 ppm, directly injected by microliter syringe into the instrument for applicable calibration curves.

| Final ppm per | Volume 8000  |
|---------------|--------------|
| 100 ml volume | ppm Standard |
| 8000          | As Is        |
| 4000          | 50.0         |
| 2000          | 25.0         |
| 1000          | 12.5         |
| 500           | 6.25         |
| 100           | 1.25         |

4. 8000 ppm Carbon Standard: Used to make TOC soil curve. Dissolve 4.2508g Potassium Hydrogen Pthalate in a 250mL volumetric flask. Bring to volume with DI H2O.



5. 1:1 HNO3 and H2O solution for removing IC from soil.

## VI. APPARATUS AND MATERIALS

#### A. Water

- 1. Apollo 9000 TOC Combustion Analyzer. Model US06282005.
- 2. Analytical balance capable of accurately weighing 0.0001 g.
- 3. 40mL glass vials for autosampler.
- 4. Pipettes = all sizes needed.
- 5. Volumetric flasks = 100 mL.
- 6. 10 mL Luer-Lok syringe with 0.45 micron syringe filter for DOC

#### B. Soil

- 1. 183 Boat Sampling Module. Model US01130011.
- 2. Analytical balance capable of accurately weighing 0.0001g.
- 3. 50 microliter syringe.
- 4. Mortar and pestle for homogenization.
- 5.  $60^{\circ}$  C oven for removal of IC.
- 6. Quartz wool.

#### VII. INSTRUMENT CALIBRATION

- A. Water calibration
  - 1. Standards are made for the appropriate calibration range. For the low range calibration curve a blank, 0.5, 1, 5, 10 and 20 ppm standards are run. For high range a blank, 5, 10, 50, and 100 ppm standard are run.



Revision No. 8 Date: 11-17-08 Page 7 of 14

- 2. Standards are run in ascending order.
- 3. See instrument manual for exact running procedures.
- 4. The instrument reads total organic carbon, inorganic carbon and total carbon, so standards must be prepared and the instrument must be calibrated for all.
- 5. At the completion of the calibration, a linear curve is displayed and printed for each type of analysis. It is up to the user to be sure that the calibration is acceptable. The R2 value must be > or = 0.997.
- B. Soil Calibration
  - 1. Standard solutions are used to perform multi spike concentration at various levels: 100, 500, 1000, 2000, 4000, and 8000 ppm.
  - 2. The five-point calibration has been proven to be linear.

## VIII. SAMPLE COLLECTION, PRESERVATION, AND HANDLING

- A. For both water and soil, sample containers must be pre-washed with detergents, acids, and DI water. Glass is preferable.
- B. Samples should be analyzed as soon as possible after sampling.
- C. Because of the possibility of oxidation or bacterial decomposition of some components of aqueous samples, the time between sample collection and the start of analysis should be minimal and the sample needs to be stored at 4°C and protected from sunlight and atmospheric oxygen.
- D. If samples cannot be analyzed right away, they should be preserved to a pH<2 with Phosphoric acid and kept at 4°C and away from sunlight.

#### IX. PROCEDURE

- A. Water (TOC, TC, IC)
  - 1. Pour about 30 mL of sample into a glass vial.



Revision No. 8 Date: 11-17-08 Page 8 of 14

- 2. The instrument allows the sample to be recalculated against a different calibration curve if the sample is over range. If a sample is higher than the highest calibration range, it must be diluted.
- 3. See the instrument manual for complete details on running the samples.
- 4. All samples must be run in quadruplicate.
- B. Water (DOC)
  - 1. Filter sample and a blank using a 10 mL Luer-Lok syringe with a 0.45 micron syringe filter.
  - 2. Proceed to step 1 under water (TOC, IC, and TC)
- C. Boat Specifications
  - 1. Standard Range of Detection is 0.5 to 160 µg of Carbon.
  - 2. Range with Carbon Range Extension Kit 0.5 to 800  $\mu$ g of Carbon (P/N-885-462)
  - 3. Sample Volume (Liquids) -5 to 40  $\mu$ L
  - 4. Sample Weight (Solids) -5 to 100 mg
  - 5. Temperature 700° C (samples which are composed of metals) to 900° C (normal operation)
    - a. The furnace temperature is adjustable up to 1000° C.
  - 6. Method of Operation
    - a. Total Carbon (TC) is measured directly as a neat sample, without any pretreatment. TOC analysis is achieved by addition of a few drops of diluted HNO<sub>3</sub>. (1 part conc. HNO3; 1 part H2O) to the sample until effervescence is no longer visible. After the sample is acidified, it is placed in an oven at 60° C for 10-15 minutes, or until the sample appears to be dry, to assist in removal of inorganic carbon (IC). Inorganic carbon measurements can be made by subtracting TOC from TC (i.e., IC=TC –



NY Lab #11393/11840 FL Lab # E87600/E87936 Revision No. 8 Date: 11-17-08 Page 9 of 14

TOC).

- b. Homogeneous solid samples are weighed into a removable platinum or quartz boat, which is readily accessible through the flip-top hatch covered inlet. It is important that the solid samples be in a homogenized form for consistent repeatable results. Analytical mills, as seen in Tekmar-Dohrmann's laboratory product catalog such as the A-10 (P/N 23-0039-000) and A-20 (P/N 23-0042-000), may be used for homogenizing your solid samples. Liquids are injected directly into the sample boat through a removable septum port.
- c. The boat is manually advanced into the furnace, where the sample is combusted in the presence of a catalyst, cobalt oxide. The CO2 gas formed from the combustion/oxidation of the sample is carried through a Teflon line from the combustion tube to the Apollo 9000 gas/liquid separator. There the sample gas is swept through the moisture and halide removal system with the carrier gas then detected by the CO2 specific Non-Dispersive Infrared (NDIR) Detector. The detector measures the amount of carbon dioxide produced from the oxidation of carbon in the sample (as µg of carbon [C]).
- d. For solid samples, the actual concentration, ppmC, can be computed by dividing the software's resulting "ppmC" with the measured weight of the sample in grams (g). This will yield a result of " $\mu$ g of C / g of sample", which is equal to ppm. This result in " $\mu$ g of C" must fall below the " $\mu$ g of C" of the highest standard on curve. If higher a smaller amount should be used. Soils are run in duplicate. The higher result is reported.
- e. For liquid samples, such as the Carbon standards, the actual concentration can be calculated by dividing the resulting ppmC value with the actual volume (ml) of the sample in the boat. Just as with solids, the final concentration units will be µg of C/ml of sample, which is equal to ppm.

An example of the calculation is given below:

 $\frac{\mu g \text{ of } C}{(g \text{ of sample}) \text{ or } (mL \text{ of sample})} = ppmC$ 

- D. Cleaning Procedure
  - 1. Run a cleaning procedure on the Apollo 9000 at the beginning and end of each sequence to clean out the system and prolong the life of the catalyst.



Revision No. 8 Date: 11-17-08 Page 10 of 14

a. In the TOC Talk 4.2 Software select Sample Setup. Go to File and select new. In the Pos column type in 1001 to draw DI water from the 1L supply. Select sample in the sample type column. Select cleaning procedure in the Method ID column. Run 6-10 reps.

## X. DATA CALCULATION

The instrument prints out a value in ppm for total carbon, inorganic carbon, and organic carbon for each sample run. The value is calculated from the average of four sample repetitions. This number is multiplied by the dilution factor for the sample, if any. TOC boat sampler samples are calculated as an average of each of the four repetitions and reported along with the associated RPD value.

## XI. QUALITY CONTROL

- A. QC standards are made up fresh daily from the total organic carbon stock solution of 1000 ppm.
- B. Any blank, and other DI water used, is taken directly from the DI water supply.
- C. For water: a blank, two mid-level, and two lower-level QC's, one of each is from a different lot # and an outside water SRM is also run. Results must fall within the manufacturers range. 5 and 15 ppm standard checks are run to verify the calibration curve. This QC must fall within 15 % of its known value.
- D. For soil: a blank, 2000ppm and 8000ppm each one from a different lot # and an outside soil SRM are run.
- E. To establish the ability to detect organic and inorganic carbon, the laboratory shall determine the MDL using a blank solution fortified at two to three times the estimated detection limit. To generate an MDL, seven identical aliquots are processed through the analytical method. The results are then entered in the MDL chart for TOC, where the actual MDL is calculated. The MDL generated must be low enough to detect carbon at the levels outlined in compliance monitoring regulations. This MDL is determined annually, unless a change in instrument hardware or operating conditions occurs which would warrant re-evaluation.

After all of these checks pass, a run may be started.



FL Lab # E87600/E87936

Revision No. 8 Date: 11-17-08 Page 11 of 14

- A. There is a duplicate run for every 10 liquid samples. This result must be within 20%, of the original value. If the duplicate is more than +/- 20% of the value then the sample must be re-run if possible.
- B. On one of every ten samples, a matrix spike is performed. A known amount of total carbon is added to the sample. The % recovery must be within 30% or the data is suspect due to matrix interferences.
- C. QC check standards are run every 10 samples. This includes a QC of 5 ppm and a blank. A mid-run QC must be within 15% of its known concentration. If this check standard fails, a freshly prepared QC is run. If this fails, the entire run is suspect.

If any of these QC checks fail, another is run. If it fails again, the instrument must be checked for problems, i.e. it could be out of gas or out of a solution. In case of serious problems in the running of the instrument, the manufacturer can be contacted.

## XII. METHOD DETECTION LIMIT

- A. Spectrum is in full compliance with NELAC requirements, however, MDL studies will be performed on an annual basis in support of state and program requirements such as CAM, RCP, ASP, CLP-like deliverables and specific project quality assurance objectives.
- B. To determine the MDL for each analyte, analyze a sample aliquot at 3-5X the detection limit or as specified by the method. The calculated MDL **must be greater** than 10% of the standard used. If the MDL is less than 10%, repeat the analysis using a smaller concentration. The ideal MDL will be slightly greater than 10% of the standard used.
- C. The results of the MDL studies must be within 50-150% of true value.

## XIII. METHOD PERFORMANCE

Refer to Spectrum's Laboratory Information Management System (LIMS) for quality control charts.

## XIV. POLLUTION PREVENTION

A. Never dispose of samples, reagents, chemicals, or waste waters by pouring them down the sink. Always use designated waste containers for disposal.



Revision No. 8 Date: 11-17-08 Page 12 of 14

- B. Plan accordingly to limit waste accumulation. Make only the amount of reagent that can be used before the expiration date. Do not make in excess.
- C. Clients should provide a sufficient amount of the sample for the requested analysis. Excess amounts of the sample result in increased disposal fees for the laboratory.

## XV. WASTE MANAGEMENT

Spectrum Analytical is dedicated to implementing ways to efficiently utilize resources along with complying with all environmental laws and regulations in order to reduce the accumulation of waste as defined in Spectrum's Chemical Hygiene Plan. All questions and/or problems should be referred to the Health and Safety Manager.

- A. Aqueous Wastes:
  - 1. All **solvent contaminated** water must be collected in lab satellite-containers then transferred to a waste drum in the hazardous waste staging area where they are monitored and ultimately disposed of by a hazardous waste disposal facility.
  - 2. All **non-solvent contaminated** aqueous wastes (including preserved water, digestates, instrument effluents, and corrosive aqueous wastes) are accumulated in lab satellite-containers and transferred to a drum in Hazardous Waste staging area #2 where they will be disposed by a licensed hazardous waste facility.
  - 3. COD vials are disposed in a designated drum.
- B. Solids:
  - 1. Expired soil samples in the storage area are emptied into a drum and a sample is collected. The method of disposal will be determined by the findings of the sample profile.
  - 2. Expired PCB containing samples (marked with yellow tape) are segregated and collected in the waste staging area and packed for disposal by a licensed hazardous waste facility.
  - 3. Objects containing high levels of mercury (samples, broken thermometers, etc.) are segregated and collected in the waste staging area and packed for disposal by a hazardous waste facility.



Revision No. 8 Date: 11-17-08 Page 13 of 14

- NY Lab #11393/11840 FL Lab # E87600/E87936
- C. Sludge, Tars, Oils:

These samples are accumulated in the waste staging area and packed for disposal by a hazardous waste facility/transporter.

D. Highly contaminated objects (reagents, chemicals, vials, samples) are segregated and collected by each dept. to avoid mixing of incompatible materials. It is then collected, and packed periodically throughout the year by hazardous waste disposal facilities.

## XVI. ATTACHMENTS

Daily Maintenance Checks for Apollo 9000.

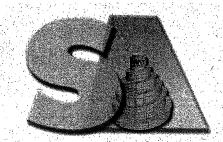
Tips for maintaining Apollo 9000.

## XVII. REFERENCES

- Method 9060, Total Organic Carbon. September, 1986, U.S. Environmental Protection Agency, Office of Research and Development, Environmental Monitoring and Support Laboratory, Cincinnati, Ohio 45268.
- Method 415.1, Total Organic Carbon. September, 1986, U.S. Environmental Protection Agency, Office of Research and Development, Environmental Monitoring and Support Laboratory, Cincinnati, Ohio 45268.
- Standard Methods for the Examination of Water and Wastewater, Method 5310B: 18<sup>th</sup>, 19<sup>th</sup>, and 20<sup>th</sup> Editions.
- Apollo 9000 TOC Combustion Analyzer, User Manual; Rev C. Version 11.09.00 Copy right 1999-2000

## **XVIII. GLOSSARY**

- TC: Total Carbon
- IC: Inorganic Carbon
- mg/L: Milligram per Liter
- mg/Kg: Milligram per Kilogram
- TOC: Total Organic Carbon




Revision No. 8 Date: 11-17-08 Page 14 of 14

NY Lab #11393/11840 FL Lab # E87600/E87936

- CO2: Carbon Dioxide
- mL: Milligram
- MDL: Minimum Detection Limit
- SRM: Standard Reference Material
- QC: Quality Control
- PPM: Parts per Million





Revision No. 2 Date: 4/10/07 Page 1 of 10

# UNCONTROLLED COPY

## SPECTRUM ANALYTICAL, INC Featuring Hanibal Technology 11 Almgren Drive Agawam, MA 01001

## **Standard Operating Procedure**

For pH in Soil SW 846 9045

en Nithy then ko Prepared/by ran anter Reviewed by Lab Director

 $\frac{-0}{\text{Date}}$ 

 $\frac{\frac{1}{1}}{\frac{1}{1}}$ 

F:\data\QAQC\NELAC SOPs\NELAC SOPs 2007\Wet Chemistry\SOP pH-Soil YM Modified Rev.2. 4-10-07.doc



FL Lab # E87600/E87936

Revision No. 2 Date: 4/10/07 Page 2 of 10

## TABLE OF CONTENTS

## STANDARD OPERATING PROCEDURE for pH in Soil SW 846 9045

| I.     | SCOPE AND APPLICATION                        | 3  |
|--------|----------------------------------------------|----|
| II.    | SUMMARY OF METHOD                            | 3  |
| III.   | HEALTH AND SAFETY                            | 3  |
| IV.    | INTERFERENCES                                | 3  |
| V.     | REAGENTS                                     | 4  |
| VI.    | APPARATUS AND MATERIALS                      | 4  |
| VII.   | SAMPLE COLLECTION, PRESERVATION AND HANDLING | 4  |
| VIII.  | USING SEVENMULTI LINK AND ELEMENT DATA BASE  | 5  |
| IX.    | CALIBRATION                                  | 6  |
| X.     | PROCEDURE                                    | 7  |
| XI.    | QUALITY CONTROL                              | 7  |
| XII.   | METHOD DETECTION LIMIT                       | 8  |
| XIII.  | METHOD PERFORMANCE                           | 8  |
| XIV.   | POLLUTION PREVENTION                         | 8  |
| XV.    | WASTE MANAGEMENT                             | 9  |
| XVI.   | REFERENCES                                   | 10 |
| XVII.  | ATTACHMENTS                                  | 10 |
| XVIII. | . GLOSSARY                                   | 10 |



Revision No. 2 Date: 4/10/07 Page 3 of 10

#### I. SCOPE

A. This method describes the electrometric measurement of the pH of soil samples.

B. This method can be used for soils and wastes.

#### II. SUMMARY OF METHOD

A. Soil samples are mixed with reagent water and the resultant pH is measured.

B. Mettler-Toledo SevenMulti meter is used which automatically compensates for temperature.

#### III. HEALTH AND SAFETY

To maintain the application of OSHA regulations regarding the safe handling of the chemicals specified in this method, the laboratory must follow proper safety procedures:

A. All chemical solvents should be transported on a cart when moved from room to room.

- B. All analytical operations, such as digestions, must be performed under a hood expressly designed for acid use.
- C. Safety glasses, gloves and protective clothing must be worn when preparing standards and digesting samples.
- D. The analyst must wear safety glasses and take extra care when opening the gas cylinders or checking for leaks in the gas lines. (See Spectrum's Chemical Hygiene Plan on using compressed gas cylinders.)
- E. The analyst must dispose of all unwanted chemicals and acids in properly marked containers inside the hood and chemical cabinets. (See Spectrum's Waste Disposal Plan.)

#### **IV. INTERFERENCES**

A. Samples that have a true pH of <1, or >10 may give false results. The range of the instrument will be exceeded and the results will come out to be either higher for <1, or lower for >10.

F:\data\QAQC\NELAC SOPs\NELAC SOPs 2007\Wet Chemistry\SOP pH-Soil YM Modified Rev.2. 4-10-07.doc



- B. A stable temperature is needed to avoid errors. Usually standard room temperature, 25° C, is the best temperature to read the pH of any sample.
- C. Oily samples may leave a coating on the electrode that will skew results. An oily electrode may be cleaned in a sonicator, or be washed with detergent a few times. After washing with detergent, the electrode should be rinsed several times with DI water placed in 1:10 HCl overnight and then thoroughly rinsed.

#### V. REAGENTS

- A. Reagent water = deionized water (ASTM Type I).
- B. Buffer solutions = pH 4, 7, and 10.

#### VI. APPARATUS AND MATERIALS

A. Mettler-Toledo SevenMulti meter with temperature correction.

B. InLab 413 probe (Zero point pH 7.00 +/- 0.25).

C. Beakers = 30 or 50 mL and 250 mL.

D. Analytical balance capable of accurately weighing 0.1 g.

E. Magnetic stir plate.

F. Teflon-coated stirring bars.

G. Teflon stirring rods.

#### VII. SAMPLE COLLECTION, PRESERVATION AND HANDLING

- A. Samples should not be preserved. They should be refrigerated at 4° C.
- B. The samples should be analyzed as soon as possible.



#### VIII. USING SEVENMULTI LINK AND ELEMENT DATA BASE

- A. In Element go to Data Entry/Review under Laboratory Menu and create a data entry for your batch by selecting your batch from the box on the left side of the screen and click "Create" button.
- B. Export the data entry table by clicking "**Export**" button and double clicking "**Export**" file. Click "**Yes**" to save over it.
- C. Exit out of Element.
- D. On the desktop, double-click "Export" shortcut.
- E. Click the Bell icon at the top of the screen to format your logbook sheet for pH.
- F. Open File Menu and choose Save As. The Save As dialog box appears. Double-click on the Desktop folder shortcut, then open pH folder shortcut by doing samething. In the File name box, key the number of your batch. Click "**Save**" button to save the file with the new name in the "pH" folder.
- G. Before measuring pH, double-click on the LabX Direct-SevenMulti v.2.x shortcut on the Desktop to establish a link between Computer and SevenMulti.
- H. Measure pH of the samples, duplicate, and SRM (pH 7) by clicking on the B2 cell (first cell in the "**Analized**" column) and press "**Read**" button on the SevenMulti. An instrument will automatically transfer data (date and time of the analysis, pH measurement, units of measurement) in the corresponding cells.
- I. After measuring pH of all the samples is finished click floppy disc icon to save the file. The first time you save the file. Answer "Yes" to prompt.
- J. Select the area of the spreadsheet that needs to be print out by clicking on the A1 cell at the top left corner and without releasing a button drag the mouse down to include all the samples and calibration data on the spreadsheet and to the right to include all the columns up to "Analyte" column. Release button. Go to File Menu, select "Print Area" command and click "Set Print Area".
- K. Go to the Page Setup command on the File Menu. The Page Setup dialog box appears. Click the Page Tab (if it is not selected already). In the Orientation Section, click the Landscape button. Then click the Header/Footer Tab. Click the Custom Footer button, type in analyst's initials and the date of preparation of analysis. Click "**OK**" button at the bottom of the dialog box.

F:\data\QAQC\NELAC SOPs\NELAC SOPs 2007\Wet Chemistry\SOP pH-Soil YM Modified Rev.2. 4-10-07.doc



- L. Save changes made by clicking on the floppy disk icon and print a copy of the spreadsheet by clicking on the print icon. Exit out of Excel.
- M. In Element, go to Data Entry/Review and upload your data entry table. Select your batch and click "**Open**".
- N. Browse to F:\Logbooks\Wet Chem\2007\pH and select the Excel file whose filename is the batch number.
- O. Once results are uploaded right click "Analized" column and select Analyzed=Prepared command. Verify that all data is correct, and click "Save". "Lock" and "Analyst Review" results.
- P. All logbook spreadsheets are saved at F:\Logbooks\Wet Chem\2007\pH and are already formatted to print.

#### IX. CALIBRATION

- A. Prior to the calibration of the SevenMulti follow instructions of "Using SevenMulti link and Element data base" to create a logbook sheet in order to save calibration data.
- B. Obtain commercially manufactured buffer solutions, one each for pH 4, pH 7, and pH 10. Keep the bottles tightly closed and away from other standards and samples.
- C. Pour an aliquot of each, about 20 mL, into a small beaker along with a stir bar. These are kept by the pH meter and changed every day. The solution should be stirred while it is read.
- D. The SevenMulti features automatic calibration buffer recognition. This allows you to calibrate in order you like within a buffer group. Before you do calibration make sure that the Calibration Mode is set at **Segment Method** and that Standard Buffer group is set at # 7 (2.00, 4.01, 7.00, 10.00 @ 25.0 °C) in Calibration Setting Window. See Attachment (Operating Instruction: The pH/Ion and ISFET expansion units 6.1.2 Operation of the pH menu Pg.30-32).
- E. Calibration is done using new buffer solutions of pH 4, pH 7, and pH 10. Place pH 4 buffer solution on the stir plate and turn it on. Place pH probe on the electrode arm and lower it into the solution. Press Calibration button located on the Mettler Toledo Instrument. Once endpoint symbol (A) freezes and has curved line around it, instrument is ready to read next buffer solution. Repeat the procedure for buffer solutions with pH 7, and pH 10. Each time Calibration button is pressed it will be displayed as CAL 1, 2, or 3 on the MettlerTolledo display. Once all three buffer solutions are used press "End" button located at the bottom of the Softkey Assignment Area. This will bring up

F:\data\QAQC\NELAC SOPs\NELAC SOPs 2007\Wet Chemistry\SOP pH-Soil YM Modified Rev.2. 4-10-07.doc



FL Lab # E87600/E87936

Revision No. 2 Date: 4/10/07 Page 7 of 10

"Current Calibration Data pH" display showing: buffer solutions used, mV, offset point and slope in % units. The slopes of the curve should be between 90 and 105%. If not, the meter needs to be re-calibrated. Position cursor underneath the last entry on the spreadsheet. On the Softkey Assignment Area press second button from the bottom that says "**Save**". This will save calibration settings into the SevenMulti system and will transfer calibration data to the computer. Keep only buffer solutions used, mV, offset point and slope in % units data, delete the rest.

#### X. **PROCEDURE**

A. Soils

- 1. For soil and waste samples, weigh out 20 grams into a small beaker. Add 20 mL of DI water and stir continuously with a Teflon-stirring rod for 5 minutes. Remove the stirring rod and let the sample sit for an hour.
- 2. Soils that are hydroscopic, and other soils with problematic matrices, may be further diluted. Mix 20 grams of soil to 40 mls of distilled water. Repeat, if necessary, with a larger aliquot of water
- 3. The samples may be filtered if needed to obtain a clear supernatant. If the supernatant is multiphasic, the oily layer is decanted off and the pH of just the aqueous layer is taken.
- 4. Let the suspension stand for one hour to allow most of the suspended solids to settle out. Analyze the supernatant for the pH.
- 5. Report the results "pH @ degrees Centigrade".

## XI. QUALITY CONTROL

- A. The instrument is calibrated before each run using the following guidelines:
  - 1. The electrode is checked to be sure that the solution is filled to the correct level.
  - 2. A three-point calibration is performed using pH 4, pH 7, and pH 10 buffer solutions.
  - 3. The slope of the line between the two points is calculated and can be displayed. This must be between 90% and 105%.



Revision No. 2 Date: 4/10/07 Page 8 of 10

- B. Several steps are taken to ensure good quality while running the samples.
  - 1. The electrode is rinsed thoroughly between each sample.

#### C. Electrode test

SevenMulti has a feature that allows you to check the drift, the slope, the offset and the response time of your pH electrode without performing a calibration. See Attachment (Operating Instruction: The pH/Ion and ISFET expansion units 6.1.2 Operation of the pH menu, 2.Electrode test Pg. 32).

#### XII. METHOD DETECTION LIMIT

- A. Spectrum is in full compliance with NELAC requirements, however, MDL studies will be performed on an annual basis in support of state and program requirements such as CAM, RCP, ASP, CLP-like deliverables and specific project quality assurance objectives.
- B. To determine the MDL for each analyte, analyze a sample aliquot at 3-5X the detection limit or as specified by the method. The calculated MDL **must be greater** than 10% of the standard used. If the MDL is less than 10%, repeat the analysis using a smaller concentration. The ideal MDL will be slightly greater than 10% of the standard used.
- C. The results of the MDL studies must be within 50-150% of true value.

#### XIII. METHOD PERFORMANCE

Refer to Spectrum's Laboratory Information Management System (LIMS) for quality control charts.

#### **XIV. POLLUTION PREVENTION**

- A. Never dispose of samples, reagents, chemicals, or waste waters by pouring them down the sink. Always use designated waste containers for disposal.
- B. Plan accordingly to limit waste accumulation. Make only the amount of reagent that can be used before the expiration date. Do not make in excess.
- C. Clients should provide a sufficient amount of the sample for the requested analysis. Excess amounts of the sample result in increased disposal fees for the laboratory.



Revision No. 2 Date: 4/10/07 Page 9 of 10

## XV. WASTE MANAGEMENT

Spectrum Analytical is dedicated to implementing ways to efficiently utilize resources along with complying with all environmental laws and regulations in order to reduce the accumulation of waste as defined in Spectrum's Chemical Hygiene Plan. All questions and/or problems should be referred to the Health and Safety Manager.

- A. Aqueous Wastes:
  - 1. All **solvent contaminated** water must be collected in lab satellite-containers then transferred to a waste drum in the hazardous waste staging area where they are monitored and ultimately disposed of by a hazardous waste disposal facility.
  - 2. All **non-solvent contaminated** aqueous wastes (including preserved water, digestates, instrument effluents, and corrosive aqueous wastes) are accumulated in lab satellite-containers and transferred to a drum in Hazardous Waste staging area #2 where they will be disposed by a licensed hazardous waste facility.
  - 3. COD vials are disposed in a designated drum.
- B. Solids:
  - 1. Expired soil samples in the storage area are emptied into a drum and a sample is collected. The method of disposal will be determined by the findings of the sample profile.
  - 2. Expired PCB containing samples (marked with yellow tape) are segregated and collected in the waste staging area and packed for disposal by a licensed hazardous waste facility.
  - 3. Objects containing high levels of mercury (samples, broken thermometers, etc.) are segregated and collected in the waste staging area and packed for disposal by a hazardous waste facility.
- C. Sludge, Tars, Oils:

These samples are accumulated in the waste staging area and packed for disposal by a hazardous waste facility/transporter.

D. Highly contaminated objects (reagents, chemicals, vials, samples) are segregated and collected by each dept. to avoid mixing of incompatible materials. It is then collected, and packed periodically throughout the year by hazardous waste disposal facilities.



## **XVI. REFERENCES**

SW 846 Method 9045A, Soil and Waste pH. Revision 1, November, 1990, U.S. Environmental Protection Agency, Office of Research and Development, Environmental Monitoring and Support Laboratory, Cincinnati, Ohio 45268.

Operating Instruction: The pH/Ion and ISFET expansion units 6.1.2 Operation of the pH menu Pg.30-32.

Operating Instruction: The pH/Ion and ISFET expansion units 6.1.2 Operation of the pH menu, 2.Electrode test Pg. 32.

## **XVII. ATTACHMENTS**

1. Mettler-Toledo Operating SevenMultiTM Instructions; The pH/Ion and ISFET expansion units

## XVIII. GLOSSARY

| pH<br>OSHA | <i>V</i> = | potential of Hydrogen<br>Occupational Safety and Health Agency |
|------------|------------|----------------------------------------------------------------|
| °C         | =          | degrees Celsius                                                |
| DI         | =          | de-ionized                                                     |
| mL         | _ =        | milliliters                                                    |
| g          | =          | grams                                                          |

| The pH mode                                              |                                                                                                      |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------|
|                                                          |                                                                                                      |
| the combingit, 1 Menu structure of the pH mode           |                                                                                                      |
| Page                                                     | 30 6. Set Alarm Limits                                                                               |
| 1. Set Calibration Buffer                                | 1. pH Max. Limit                                                                                     |
| 1. Select a Standard Buffer Group                        | 2. pH Min. Limit                                                                                     |
| 2. Set a Customized Buffer Group                         | 3. Temperature Max. Limit                                                                            |
| 2. Select Calibration Mode                               | 4. Temperature Min. Limit                                                                            |
| 1. Segment method                                        | 5. Calibration Offset Max. Limit                                                                     |
| 2. Linear method                                         | 6. Calibration Offset Min. Limit                                                                     |
| 3. Set Calibration Reminder                              | 7. Calibration Slope Max. Limit                                                                      |
| <ol> <li>Off</li> <li>Remind by Interval Time</li> </ol> | 8. Calibration Slope Min. Limit                                                                      |
|                                                          |                                                                                                      |
| Page                                                     |                                                                                                      |
| Belect Resolution and Stability Criterion Page           |                                                                                                      |
| I. Select Display Resolution                             | 1. Log to Memory                                                                                     |
| <b>1.</b> X.X                                            | <ol> <li>Log to Interface</li> <li>Log to Memory and Interface</li> </ol>                            |
| <b>2.</b> X.XX                                           | 2. Off                                                                                               |
| <b>3.</b> X.XXX                                          | 2.01                                                                                                 |
| 2. Select Stability Criterion                            | 8. Select Data Transfer Mode                                                                         |
| 1. Fast<br>2. Normal                                     | 1. Automatic Data Transfer                                                                           |
| 3. Strict                                                | 1. Log to Memory                                                                                     |
| ls                                                       | 2. Log to Interface                                                                                  |
| Select Endpoint Formats Page :                           |                                                                                                      |
| 1. Auto                                                  | 2. Manual Data Transfer to Memory                                                                    |
| 2. Manual                                                | 9. Activate Rondolino Sample Changer                                                                 |
| ibed in the cartined                                     | 1. Measurement                                                                                       |
| Set MTC Temperature Page 3                               | 2. Calibration                                                                                       |
| annels.                                                  |                                                                                                      |
|                                                          | <ol> <li>ph Memods in Memory</li> <li>Load a Stored pH Method from Memory</li> </ol>                 |
|                                                          | <ol> <li>Loud a Slored pH Melrical from Memory</li> <li>Save Current Settings as a Method</li> </ol> |

The pH/Ion and ISFET expansion units

## 6.1.2 Operation of the pH menu

- If two expansion units are attached, first ensure that the desired expansion unit is selected.
- Press Mode and press pH in the menu that appears to select the pH mode.
- Call up the pH menu with Menu.

## Calibration Setting Set Calibration Buffe

۱.

- Set Calibration Buffer
  - 1. Select a Standard Buffer Group
  - Select a predefined standard pH buffer group.

The following buffer groups are predefined.

| ٨ | Nr. | Buffer 1                              | Buffer 2 | Buffer 3 | Buffer 4 | Buffer 5 | Temp. | Designation            |
|---|-----|---------------------------------------|----------|----------|----------|----------|-------|------------------------|
| ł | 1.  | 1.68                                  | 4.00     | 7.00     | 10.01    |          | 25 °C | METTLER TOLEDO US      |
|   | 2.  | 2.00                                  | 4.01     | 7.00     | 9.21     | 11.00    | 25 °C | METTLER TOLEDO Europ   |
|   | 3.  | 2.00                                  | 4.00     | 7.00     | 9.00     | 12.00    | 20 °C | Merck standard buffers |
|   | 4.  | 1.680                                 | 4.008    | 6.865    | 9.184    | 12.454   | 25 °C | DIN (19266) / NIST     |
|   | 5.  | 1.09                                  | 4.65     | 6.79     | 9.23     | 12.75    | 25 °C | DIN (19267)            |
|   | 6.  | 1.680                                 | 4.003    | 6.864    | 9.182    | 12.460   | 25 °C | JJG 119                |
|   | 7.  | 2.00                                  | 4.01     | 7.00     | 10.00    | _        | 25 °C | Technical buffers      |
|   | 8.  | 1.679                                 | 4.008    | 6.865    | 9.180    | _        | 25 °C | JIS Z 8802             |
|   |     | · · · · · · · · · · · · · · · · · · · |          |          |          |          |       |                        |

## 1. Auto buffer recognition On

The SevenMulti<sup>™</sup> features automatic calibration-buffer recognition. This allows you to calibrate in order you like within a buffer group.

**Note:** If the measured mV value for the first calibration point deviates by more than 60 mV (approx.  $\pm$  1 pH) from the theoretical value of the calibration buffer-point, the **Offset out of range** warning appears.

## 2. Auto buffer recognition Off

Switch off the automatic buffer recognition if you want to specify the order of the pH buffers yoursel if the offset value deviates too much from the theoretical value (e.g. in readings using electrodes th contain a non-aqueous electrolyte.

- A table for selection of the pH buffers appears.
- Press Change to define the order of the pH buffers. Navigate to the next input field using 4.
- Press Save to accept the list.

## 2. Set a Customized Buffer Group

This menu allows you to define your own set of pH buffers with up to 5 different temperatures for each buffer for calibrating. SevenMulti™.

 Please note that the temperature difference between buffers must be at least 5 °C and the difference between the pH values must be at least 1.

| Nr. | Temp. | Buffer 1 | Buffer 2 | Buffer 3 | Buffer 4 | Buffer 5 |
|-----|-------|----------|----------|----------|----------|----------|
| 1.  |       |          |          |          |          |          |
| 2.  |       |          |          |          |          |          |
| 3.  |       |          |          |          |          |          |
| 4.  |       |          |          |          |          |          |
| 5.  |       |          |          |          |          |          |

## esignation

lected.

ETTLER TOLEDO US ETTLER TOLEDO Europ erck standard buffers IN (19266) / NIST IN (19267) IG 119 echnical buffers

than 60 mV (approx.

out of range warning a

f the pH buffers yourse

ngs using electrodes th

nput field using  $\downarrow$ .

S Z 8802

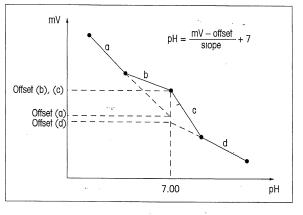
Press Change to access the table.

- You can navigate within the table using the  $\star$  and  $\downarrow$  keys and delete the value using  $\leftarrow$ .

Press End to finish editing the table and Save to store the values.

1. Auto buffer recognition On

(See 1. Select a standard buffer group)


2. Auto buffer recognition Off

(see 1. Select a standard buffer group)

## ws you to calibrate in Select Calibration Mode

## 1. Segmented Method

The segmented method is the most modern method for precise pH readings. The calibration curve is made up of line segments joining the individual calibration points rather than a linear regression through them. This takes into account any non-linear behavior of the electrode over a large pH range. In the diagram, the segments a, b, c and d all have different slopes. The offset, defined as the potential at pH 7 is also different for segments a, b and d while that for segments b and c is the same. This is because they both share the pH 7 buffer, which is in fact the offset.



The segmented method is preferred for high-precision readings.

## 2. Linear Method

With this method, the calibration curve is determined via a linear regression line. The linear method is preferred when samples with greatly varying pH values are to be compared. The pH/Ion and ISFET expansion units

#### 3. Set Calibration Reminder

- 1. Off - no calibration reminder

## 2. Remind by Interval Time

If the calibration reminder is active, you are reminded to perform a new calibration after a specif of time has passed. The reminder comes in the form of a message on the bottom line of the me display.

Activating this item leads to an input window, into which you enter the time interval (1 to 1000

#### 2. Electrode test

This menu allows you to check the drift, the slope, the offset and the response time of your pH electroperforming a calibration.

- Select two buffers from the current buffer group.
- Place the electrode in the first buffer solution and press Meas. When the measured value is stable, th
  ing is automatically ended and the message Place electrode in buffer 2 appears on the display.
- Place the electrode in the second buffer solution and press Meas. The reading is automatically endec sensor ID, the results for the drift (mV/min), the slope (%), the offset (mV) and the response time (s played with the message OK/critical.

## Measurement Criteria:

- The measurement will endpoint once the measurement signal changes less than 0.5 mV in 10 seco
- For calculation of the response time the time (sec.) is taken from the start of the second measurement 98 % of the difference between the reading for the two buffers is reached. (i.e.  $mV1 + 0.98_{p}$ . (mV2)
- For the drift determination a measurment is taken after 60 seconds from the start of the measuremen second buffer and again after a further 30 seconds. The drift is then the difference between the 2 rear mV/30s.

#### Limits:

- Drift is OK if less than 3 mV in 30 seconds.
- Slope is OK from 90 to 105 % of the theoretical slope.
- Offset is OK if in the range of  $\pm$  30 mV.
- Response time is OK if less than 60 seconds.

The limits within the meter apply to a test using pH 4 and 7 buffers or similar.

## 3. Select Resolution and Stability Criterion

## 1. Select Display Resolution

In this menu, you select the resolution to which the measurement display is to be shown:

- **1.X.X** one decimal place
- **2. X.XX** two decimal places
- 3. X.XXX three decimal places

## APPENDIX 8 DEVIATION FORMS

**THE JOHNSON COMPANY, INC.** 100 State Street, Suite 600 Montpelier, Vermont 05602

CAS No.: N/A

Quality Assurance Unit Record of (Check One)

[X] A. Deviation from Protocol or Standard Operating Procedure

or

[] B. Notation, Correction and Documentation of Unforeseen Circumstances

Ref: 40 CFR § 160.81, § 160.33 and § 160.35 and SOP-JCO-018

Date(s) of Occurrence: 10/15/2008 (documented on 12/11/08)

Study Designation: Supplemental Data Collection

Study Location: Kenilworth Park Landfill, Washington, DC

Test substance: **TOC and pH of surface soil** 

Study Sponsor: National Park Service

Study phase (or segment): Supplemental Data Collection laboratory analysis

Site of problem: Laboratory

Scientist, engineer or technician: Daniel W. Smith Initials: <u>DWS</u> Date: <u>12/11/08</u>

Findings:

Weather: N/A °F; Sky: Clear, Partly Cloudy, Cloudy, Fair, Rain, Snow; Wind-

List: Personnel, Visitors, Contractors: N/A

Equipment (e.g. Permeameter, Data Logger, Drill rig, Dozer): N/A

Protocol title, date and section number: QAPP - Worksheet #14

Standard Operating Procedure title: N/A

SOP No: N/A

Type of deviation (inadvertent or planned): Inadvertent

Nature of deviation or unforeseen circumstance: An alternate laboratory analyzed soil samples than the one named in the QAPP.

Observations: Spectrum Analytical of Agawam, Massachusetts analyzed the 26 surface soil samples collected during Supplemental Data Collection instead of Mitkem Laboratories (a subsidiary of Spectrum Analytical). The TOC analyses were performed using EPA Method 9060 instead of the Lloyd Kahn Method as specified in the QAPP.

The deviation occurred because the soil samples were shipped via commercial carrier to Spectrum, the parent company of Mitkem, instead of the intended subsidiary laboratory. Spectrum processed the samples by its standard method of TOC analysis (EPA 9060) because the chain-of-custody did not indicate that the samples were intended for Mitkem.

Problems: No changes to data usability will result from this deviation. Spectrum Analytical is an accredited laboratory capable of performing the analyses required for the investigation. EPA Method 9060 for the analysis of TOC in soil is analytically comparable to the Lloyd Kahn Method specified in the QAPP, so the results of the analysis are usable for this investigation (provided all QC parameters for precision and accuracy are within established ranges). Spectrum Analytical analyzed pH by the same method as specified in the QAPP (EPA 9045C).

## **APPENDIX B**

## **PRG CALCULATIONS**

## Table B-1 Human Health PRG Calculations Kenilworth Park Landfill Site

| Carcinogenic Risk       | RME EPC<br>mg/kg | C-Risk I&D | C-Risk Inh | C-Risk      |          | EPC PRG<br>10 <sup>-5</sup> mg/kg | RBC<br>mg/kg | Max Back-<br>ground<br>mg/kg |
|-------------------------|------------------|------------|------------|-------------|----------|-----------------------------------|--------------|------------------------------|
| KPN Child/Adult Visitor |                  |            |            |             |          |                                   |              |                              |
| Arsenic                 | 4.03             | 5.20E-06   | 3E-09      | 0.000005203 | 0.774553 | 7.745531                          | 0.43         | 12.4                         |
| Aroclor 1254            | 1.33             | 3.00E-06   | 1.3E-10    | 3.00013E-06 | 0.443314 | 4.433141                          | 0.32         | 0.0795                       |
| Aroclor 1260            | 0.76             | 3.00E-06   | 7.5E-11    | 3.00008E-06 | 0.253327 | 2.53327                           | 0.32         | 0.61                         |
| Dieldrin                | 0.234            | 3.90E-06   | 1.9E-10    | 3.90019E-06 | 0.059997 | 0.599971                          |              | 0.0078                       |
| Benzo(a)anthracene      | 1.35             | 1.10E-06   | 4.9E-11    | 1.10005E-06 | 1.227218 | 12.27218                          | 0.87         | 0.86                         |
| Benzo(a)pyrene          | 1.13             | 9.10E-06   | 4.1E-10    | 9.10041E-06 | 0.12417  | 1.241702                          | 0.087        | 0.9                          |
| Dibenzo(a,h)anthracene  | 0.62             | 5.00E-06   | 2.2E-10    | 5.00022E-06 | 0.123995 | 1.239945                          | 0.087        | ND                           |
| KPS Child/Adult Visitor |                  |            |            |             |          |                                   |              |                              |
| Arsenic                 | 5.98             | 7.69E-06   | 7.49E-09   | 7.69749E-06 | 0.776877 | 7.768766                          | 0.43         | 12.4                         |
| Aroclor 1254            | 1.15             | 2.60E-06   | 1.92E-10   | 2.60019E-06 | 0.442275 | 4.42275                           | 0.32         | 0.0795                       |
| Aroclor 1260            | 0.784            | 1.77E-06   | 1.31E-10   | 1.77013E-06 | 0.442905 | 4.429051                          | 0.32         | 0.61                         |
| Benzo(a)anthracene      | 0.925            | 7.46E-07   | 5.64E-11   | 7.46056E-07 | 1.239853 | 12.39853                          | 0.87         | 0.86                         |
| Benzo(a)pyrene          | 0.996            | 8.03E-06   | 6.07E-10   | 8.03061E-06 | 0.124025 | 1.240255                          | 0.087        | 0.9                          |
| Dibenzo(a,h)anthracene  | 0.43             | 3.47E-06   | 2.62E-10   | 3.47026E-06 | 0.12391  | 1.2391                            | 0.087        | ND                           |

| Non-carcinogenic Risk | RME EPC<br>mg/kg | HI ingestion | HI<br>dermal | HI inhalation | HI total | EPC HI=1<br>mg/kg | RBC<br>mg/kg | Max Back-<br>ground<br>mg/kg |          |
|-----------------------|------------------|--------------|--------------|---------------|----------|-------------------|--------------|------------------------------|----------|
| KPN Child             |                  |              |              |               |          |                   |              |                              |          |
| Aluminium             | 7940             | 0.0507       | 0.142        | 0.00015       | 0.19285  | 41172             | 78000        | 11000                        |          |
| Antimony              | 9.01             | 0.144        | 0.0269       | 0             | 0.1709   | 53                | 31           | 1.2                          |          |
| Arsenic               | 4.03             | 0.0859       | 0.00721      | 0             | 0.09311  | 43                | 0.43         | 12.4                         |          |
| Iron                  | 20850            | 0.444        | 1.24         | 0             | 1.684    | 12381             | 23000        | 54000                        | pH > 3.3 |
| Mercury               | 6.14             | 0.131        | 0.0523       | 0             | 0.1833   | 33                | 23           | 2.7                          |          |
| Silver                | 66.7             | 0.0853       | 0.0597       | 0             | 0.145    | 460               | 390          | 2.7                          |          |
| Vanadium              | 42.8             | 0.273        | 0.295        | 0             | 0.568    | 75                | 550          | 60                           |          |

## Table B-1 Human Health PRG Calculations Kenilworth Park Landfill Site

| Non-carcinogenic Risk          | RME EPC<br>mg/kg | HI ingestion | HI<br>dermal | HI inhalation | HI total | EPC HI=1<br>mg/kg | RBC<br>mg/kg | Max Back-<br>ground<br>mg/kg |          |
|--------------------------------|------------------|--------------|--------------|---------------|----------|-------------------|--------------|------------------------------|----------|
| KPN Utility/Maintenance Worker |                  |              |              |               |          |                   |              |                              |          |
| Aluminium                      | 8220             | 0.0277       | 0.083        | 0.000206      | 0.110906 | 74117             | 78000        | 11000                        |          |
| Antimony                       | 14.6             | 0.123        | 0.0246       | 0             | 0.1476   | 99                | 31           | 1.2                          |          |
| Arsenic                        | 4.24             | 0.0476       | 0.00428      | 0             | 0.05188  |                   |              | 12.4                         |          |
| Iron                           | 39146            | 0.439        | 1.32         | 0             | 1.759    | 22255             | 23000        | 54000                        | pH > 3.3 |
| Manganese                      | 488              | 0.0117       | 0.0088       | 0.00122       | 0.02172  | 22468             |              | 640                          |          |
| Vanadium                       | 38.3             | 0.129        | 0.149        | 0             | 0.278    | 138               | 550          | 60                           |          |
| KPS Child                      |                  |              |              |               |          |                   |              |                              | -        |
| Aluminium                      | 8694             | 0.06         | 0.0016       | 0.0003        | 0.0619   | 140452            |              | 11000                        |          |
| Antimony                       | 2.52             | 0.04         | 0.000752     | 0             | 0.040752 | 62                |              | 1.2                          | 1        |
| Arsenic                        | 5.98             | 0.13         | 0.010704     | 0             | 0.140704 | 43                |              | 12.4                         |          |
| Iron                           | 24527            | 0.52         | 0.014634     | 0             | 0.534634 | 45876             | 23000        | 54000                        |          |
| Mercury                        | 1.43             | 0.03         | 0.001219     | 0             | 0.031219 | 46                |              | 2.7                          |          |
| Silver                         | 6.86             | 0.01         | 0.000614     | 0             | 0.010614 | 646               |              | 2.7                          |          |
| Vanadium                       | 62.5             | 0.4          | 0.043028     | 0             | 0.443028 | 141               |              | 60                           |          |
| KPS Utility/Maintenance Worker |                  |              |              |               |          |                   |              |                              | -        |
| Aluminium                      | 10028            | 0.049        | 0.003        | 0.066         | 0.118    | 84983             |              | 11000                        |          |
| Antimony                       | 9.66             | 0.12         | 0.0049       | 0             | 0.1249   | 77                |              | 1.2                          |          |
| Arsenic                        | 6.71             | 0.11         | 0.02         | 0             | 0.13     | 52                | 0.43         | 12.4                         |          |
| Iron                           | 48856            | 0.801        | 0.049        | 0             | 0.85     | 57478             | 23000        | 54000                        |          |
| Manganese                      | 531              | 0.019        | 0.0029       | 0.35          | 0.3719   | 1428              | 1600         | 640                          |          |
| Vanadium                       | 64.2             | 0.31         | 0.075        | 0             | 0.385    | 167               | 550          | 60                           |          |

#### Table B-2 Ecological PRG Calculations Kenilworth Park Landfill Site

|                      |                                | Meado        | w Vole               | Short Tail   | ed Shrew             | America      | n Robin              | Red-taile    | ed Hawk              | Red          | Fox                  |                           |                                        |                                      |
|----------------------|--------------------------------|--------------|----------------------|--------------|----------------------|--------------|----------------------|--------------|----------------------|--------------|----------------------|---------------------------|----------------------------------------|--------------------------------------|
| COPEC                | EPC Soil<br>mg/kg <sup>1</sup> | HQ<br>LOAEL* | EPC<br>HQ=1<br>mg/kg | Mean Soil<br>KPN<br>mg/kg | Mean Soil<br>KPS <sup>1</sup><br>mg/kg | Max Site<br>Specific<br>BKG<br>mg/kg |
| Metals (KPS)         |                                |              |                      |              |                      |              |                      |              |                      |              |                      |                           |                                        |                                      |
| Aluminum             | 26759                          | 497          | 54                   |              | 28                   |              | 11103                | 17.7         | 1512                 | 0.1          | 267590               |                           | 13356.67                               | 11000                                |
| Antimony             | 41.56                          | 25.2         | 2                    | 48.2         | 1                    | NA           |                      | NA           |                      | 0.1          | 416                  |                           | 10.6                                   | 1.1                                  |
| Arsenic              | 5.26                           | 1.14         | 4.61                 | 2.17         | 2.42                 | 1.46         | 4                    | 0.108        | 49                   | 0.627        | 8                    | 3.22                      | 4.59                                   | 12.4                                 |
| Barium               | 267.82                         | 0.793        | 338                  | 1.52         | 176                  | 6.35         | 42                   | 0.466        | 575                  | 0.428        | 626                  | 126.4                     | 161.74                                 | 285                                  |
| Beryllium            | 0.81                           | 0.546        | 1.48                 | 1.04         | 0.78                 | NA           |                      | NA           |                      | 0.0424       | 19                   |                           |                                        | 1.6                                  |
| Cadmium              | 2.82                           | 1.01         | 2.79                 | 1.93         | 1                    | 1.18         | 2                    | 0.0862       | 33                   | 0.102        | 28                   | 1.26                      | 2.31                                   | 4.3                                  |
| Chromium             | 64.93                          | 0.0307       | 2115                 | 18.5         | 4                    | 23.1         | 3                    | 1.7          | 38                   | 0.754        | 86                   | 51.07                     | 56.74                                  | 62.5                                 |
| Cobalt               | 13                             | 4.27         | 3                    | 0.816        | 16                   | 1.65         | 8                    | 0.121        | 107                  | 0.0494       | 263                  | 8.62                      | 10.98                                  | 29                                   |
| Copper               | 496.85                         | 11.8         | 42                   | 22.5         | 22                   | 7.95         | 62                   | 0.585        | 849                  | 1.18         | 421                  | 80.21                     | 293.71                                 | 43                                   |
| Iron                 | 85867.22                       | 61.5         | 1396                 | 118          | 728                  | 84.8         | 1013                 | 6.23         | 13783                | 47.9         | 1793                 | 16561.33                  | 37633.33                               | 54000                                |
| Lead                 | 968.01                         | 69.4         | 14                   | 133          | 7                    | 493          | 2                    | 36.2         | 27                   | 5.74         | 169                  | 95.95                     | 243.19                                 | 189                                  |
| Manganese            | 643.01                         | 0.811        | 793                  | 1.55         | 415                  | 0.65         | 989                  | 0.0468       | 13740                | 0.204        | 3152                 | 242.47                    | 465.33                                 | 640                                  |
| Mercury              | 2.52                           | 0.0684       | 36.84                | 0.131        | 19.24                | 2.77         | 0.91                 | 0.203        | 12.41                | 0.00532      | 473.68               | 0.83                      | 0.97                                   | 2.7                                  |
| Nickel               | 136.96                         | 0.619        | 221                  | 1.17         | 117                  | 1.26         | 109                  | 0.0929       | 1474                 | 0.0954       | 1436                 | 18.82                     | 54.73                                  | 27                                   |
| Selenium             | 1.65                           | 1.79         | 0.92                 | 3.42         | 0.48                 | 1.63         | 1.01                 | 0.12         | 13.75                | 0.23         | 7.17                 | N/A                       | 1.11                                   | 1.7                                  |
| Silver               | 53.97                          | 0.321        | 168.13               | 0.614        | 87.90                | 2.64         | 20.44                | 0.3          | 179.90               | 0.04         | 1349.25              |                           |                                        | 2.7                                  |
| Thallium             | 3.623                          | 21.8         | 0.17                 | 41.6         | 0.09                 | NA           |                      | NA           |                      | 2.71         | 1.34                 | N/A                       | NA                                     | ND                                   |
| Vanadium             | 319.86                         | 22.4         | 14                   | 42.8         | 7                    | 765          | 0.42                 | 56.2         | 6                    | 2.14         | 149                  | 32.57                     | 143.92                                 | 60                                   |
| Zinc                 | 1798.15                        | 2.01         | 895                  | 3.85         | 467                  | 14.3         | 126                  | 1.05         | 1713                 | 0.313        | 5745                 | 208.91                    | 742.21                                 | 290                                  |
| PCBs (KPS)           |                                |              |                      |              |                      |              |                      |              |                      |              |                      |                           |                                        |                                      |
| Aroclor 1254         | 2.86                           | 1.51         | 1.89                 | 2.88         | 0.99                 | 1.57         | 1.82                 | 0.115        | 24.87                | 0.892        | 0.57                 | 0.61                      | 0.429                                  | 0.0795                               |
| Aroclor 1260         | 1.78                           | 4.91         | 0.36                 | 9.38         | 0.19                 | 0.196        | 9                    | 0.0144       | 124                  | 0.496        | 0.50                 | 0.34                      | 0.386                                  | 0.61                                 |
| Pesticides (KPN)     |                                |              |                      |              |                      |              |                      |              |                      |              |                      |                           |                                        |                                      |
| 4,4'-DDD             | 0.059                          | 0.00529      | 11                   | 0.0101       | 6                    | 2.08         | 0.028                | 0.237        | 0.25                 | 0.000658     | 90                   |                           | NA                                     | ND                                   |
| 4,4'-DDE             | 0.085                          | 0.00762      | 11                   | 0.0145       | 6                    | 3            | 0.028                | 0.341        | 0.25                 | 0.000948     | 90                   | 0.01                      | NA                                     | 0.033                                |
| 4,4'-DDT             | 0.251                          | 0.0225       | 11                   | 0.0043       | 58                   | 8.86         | 0.028                | 1.01         | 0.25                 | 0.0028       | 90                   | <0.00                     | NA                                     | 0.12                                 |
| Dieldrin             | 0.209                          | 0.375        | 1                    | 0.715        | 0.29                 | 2.68         | 0.08                 | 0.305        | 0.69                 | 0.0466       | 4                    | 0.07                      | NA                                     | 0.0078                               |
| Endrin               | 0.089                          | 0.0347       | 3                    | 0.0457       | 2                    | 0.879        | 0.10                 | 0.0999       | 0.89                 | 0.00431      | 21                   | 0.02                      | NA                                     | ND                                   |
| Other Organics (KPN) |                                |              | -                    |              |                      |              |                      |              |                      |              |                      |                           |                                        |                                      |
| Di-n-butylphthalate  | 1.484                          | 0.00029      | 5117                 | 0.000554     | 2679                 | 1.33         | 1.12                 | 0.151        | 10                   | 0.0000361    | 41108                | 0.02                      |                                        |                                      |

#### Table B-2 Ecological PRG Calculations Kenilworth Park Landfill Site

|                         |                                | Meado        | w Vole               | Short Tail   | ed Shrew             | America      | n Robin              | Red-taile    | ed Hawk              | Red          | Fox                  |                           |                                        |                                      |
|-------------------------|--------------------------------|--------------|----------------------|--------------|----------------------|--------------|----------------------|--------------|----------------------|--------------|----------------------|---------------------------|----------------------------------------|--------------------------------------|
| COPEC                   | EPC Soil<br>mg/kg <sup>1</sup> | HQ<br>LOAEL* | EPC<br>HQ=1<br>mg/kg | Mean Soil<br>KPN<br>mg/kg | Mean Soil<br>KPS <sup>1</sup><br>mg/kg | Max Site<br>Specific<br>BKG<br>mg/kg |
| PAHS (KPS)              |                                |              |                      |              |                      |              |                      |              |                      |              |                      |                           |                                        |                                      |
| Acenaphthene            | 8.15                           | 1.12         | 7                    | 2.15         | 4                    | 0.0805       | 101                  | 0.00591      | 1379                 | 0.175        | 47                   | 0.08                      | 2.7                                    | 0.308                                |
| Anthracene              | 26                             | 0.0896       | 290                  | 0.171        | 152                  | 0.00642      | 4050                 | 0.000472     | 55085                | 0.0139       | 1871                 | 0.05                      | 0.614                                  | 0.2                                  |
| Benzo(a)anthracene      | 29                             | 0.136        | 213                  | 0.312        | 93                   | 0.0117       | 2479                 | 0.000859     | 33760                | 0.0254       | 1142                 | 0.31                      | 0.967                                  | 0.86                                 |
| Benzo(a)pyrene          | 3.1                            | 0.789        | 4                    | 0.212        | 15                   | NA           |                      | NA           |                      | 0.0864       | 36                   | 0.32                      | 0.968                                  | 0.9                                  |
| Benzo(b)fluoranthene    | 13                             | 0.158        | 82                   | 0.302        | 43                   | 0.0113       | 1150                 | 0.000833     | 15606                | 0.0246       | 528                  | 0.48                      | 0.834                                  | 0.82                                 |
| Benzo(g,h,i)perylene    | 4.43                           | 0.0755       | 59                   | 0.144        | 31                   | 0.00541      | 819                  | 0.000398     | 11131                | 0.02117      | 209                  | 0.2                       | 0.395                                  | 0.46                                 |
| Benzo(k)fluoranthene    | 21                             | 0.138        | 152                  | 0.263        | 80                   | 0.00986      | 2130                 | 0.000724     | 29006                | 0.0214       | 981                  | 0.1                       | 0.884                                  | 0.9                                  |
| Chrysene                | 25                             | 0.168        | 149                  | 0.321        | 78                   | 0.012        | 2083                 | 0.00884      | 2828                 | 0.0261       | 958                  | 0.33                      | 0.987                                  | 0.93                                 |
| Fluoranthene            | 2.82                           | 0.389        | 7                    | 0.744        | 4                    | 0.0279       | 101                  | 0.00205      | 1376                 | 0.0606       | 47                   | 0.59                      | 2.22                                   | 1.3                                  |
| Fluorene                | 15                             | 0.195        | 77                   | 0.373        | 40                   | 0.014        | 1071                 | 0.00103      | 14563                | 0.0303       | 495                  | 0.01                      | 0.393                                  | 0.037                                |
| Indeno(1,2,3-c,d)pyrene | 7.6                            | 0.169        | 45                   | 0.323        | 24                   | 0.0121       | 628                  | 0.000891     | 8530                 | 0.0263       | 289                  | 0.19                      | 0.382                                  | 0.37                                 |
| Phenanthrene            | 80                             | 0.244        | 328                  | 0.466        | 172                  | 0.0175       | 4571                 | 0.00129      | 62016                | 0.038        | 2105                 | 0.27                      | 1.1914                                 | 0.66                                 |
| Pyrene                  | 2.45                           | 0.388        | 6                    | 0.646        | 4                    | 0.0242       | 101                  | 0.00178      | 1376                 | 0.526        | 5                    | 0.47                      | 2.117                                  | 1.7                                  |

Data in italics are HI based on NOAEL when no LOAEL data available

1.95% UCL from E&E, 12/07 includes subsurface data

## **APPENDIX C**

## REMEDIAL ALTERNATIVE COST ESTIMATING SPREADSHEETS

#### Table C-1 Preliminary Cost Estimate Unit Costs Kenilworth Park Landfill

|             | Unit Cost                                                    |           |             |      |                     |                                                                      |  |  |  |  |  |  |
|-------------|--------------------------------------------------------------|-----------|-------------|------|---------------------|----------------------------------------------------------------------|--|--|--|--|--|--|
| Reference # | Item                                                         | Unit Cost | W/O.H.& P   | Unit | Reference - Means 2 | 008 Cost Data unless noted                                           |  |  |  |  |  |  |
|             |                                                              |           |             |      |                     |                                                                      |  |  |  |  |  |  |
| 1           | Bulk Soil Excavation load onto trucks                        | \$1.60    | \$1.91      | су   | 31 23 16.42 0300    | 3 yd capacity = 260 yds/hr                                           |  |  |  |  |  |  |
| 2           | Excavating Trench or Continuous Footing                      | \$3.04    | \$3.96      | су   | 31 23 16.13 0510    | 1 yd capacity = 400 yds daily output for selective excavation        |  |  |  |  |  |  |
| 3           | 3.0 cy Front End Loader for loading excavated soil           | \$0.53    | \$0.71      | су   | 31 23 23.15 4070    | 3 yd bucket; 1575 yds daily output loading soils from selective exc. |  |  |  |  |  |  |
| 4           | Select Granular Fill - Spreading                             | \$15.59   | \$17.25     | су   | 31 23 23.15 5000    | 3 cy bucket; 1980 yds output for placement of 1.5 foot soil cover    |  |  |  |  |  |  |
| 5           | Finish Grading Large Area                                    | \$0.55    | \$0.72      | sy   | 31 22 16.10 0100    | daily output 2000 sy for grading KPS prior to cover soils            |  |  |  |  |  |  |
| 6           | Topsoil or loam from stockpile                               | \$23.98   | \$26.50     | су   | 31 23 23.15 7000    | 1 yd bucket; 840 yds daily output for 6" topsoil on cover soils      |  |  |  |  |  |  |
| 7           | Mechanical Seeding, 215 lb/acre                              | \$912.00  | \$1,075.00  | Acre | 32 92 19.13 0020    | 1.5 acres/day                                                        |  |  |  |  |  |  |
| 8           | Tidal Marsh Restoration                                      |           | \$7,500.00  | Acre | Engineer's estimate |                                                                      |  |  |  |  |  |  |
| 9           | Silt Fence                                                   | \$0.85    | \$1.16      | LF   | 31 25 13.10 1100    | 3' high , adverse conditions                                         |  |  |  |  |  |  |
| 10          | Bituminous Roadway                                           |           | \$59.00     | LF   | G2010 230 1050      | 24' wide w/o curbs and markings                                      |  |  |  |  |  |  |
| 11          | Compacted 3/4 inch crushed stone - 12 " deep                 | \$50.63   | \$56.50     | су   | 32 11 23.23 1513    | parking lot fill                                                     |  |  |  |  |  |  |
| 12          | Hand seeding; 4.5 lbs/MSF                                    | \$19.14   | \$21.50     | MSF  | 32 92 19.13 0080    | alternative #2                                                       |  |  |  |  |  |  |
| 13          | Finish Grading Small Irregular Areas                         | \$1.76    | \$2.30      | SY   | 31 22 16.10 1050    | For grading depressions at KPS                                       |  |  |  |  |  |  |
| 14          | Riparian Buffer Restoration                                  |           | \$50,000.00 | Acre | Engineer's estimate |                                                                      |  |  |  |  |  |  |
| 15          | Common fill for selective excavations                        |           | \$21.56     | су   | Engineer's estimate | 25% increase over mass fill supply/placement                         |  |  |  |  |  |  |
| 16          | Topsoil for selective excavations                            |           | \$33.13     | су   | Engineer's estimate | 25% increase over mass topsoil supply/placement                      |  |  |  |  |  |  |
| 17          | Compaction - 6 inch lifts                                    | \$1.08    | \$1.31      | ecy  | 31 223 23.23 6210   | vibrating roller - 3 passes                                          |  |  |  |  |  |  |
| 18          | Water truck                                                  | \$1.84    | \$2.15      | ecy  | 31 223 23.23 9000   | 3000 gallon truck - 3 mile haul                                      |  |  |  |  |  |  |
| 19          | Biaxial Geogrid                                              |           | \$3.50      | SY   | Engineer's estimate | geogrid for subgrade reinforcement                                   |  |  |  |  |  |  |
|             | Off-Site Disposal                                            |           |             |      | -                   |                                                                      |  |  |  |  |  |  |
| 20          | Disposal at Subtitle-D Landfill (within 10 miles)            |           | \$90.00     | ton  | Engineer's estimate |                                                                      |  |  |  |  |  |  |
| 21          | Disposal as Landfill alternate daily cover (within 10 miles) |           | \$25.00     | ton  | Engineer's estimate |                                                                      |  |  |  |  |  |  |
| 22          | Transportation (Hauling) 20 yd trailer dump                  | \$10.54   | \$13.00     | су   | 31 23 23.18 1255    | 20 mile RT                                                           |  |  |  |  |  |  |
|             |                                                              |           |             |      |                     |                                                                      |  |  |  |  |  |  |

## Table C-2 Preliminary Cost Estimate Crew Costs Kenilworth Park Landfill

| erence |                                                     | Unit Rate Unit       | Quantity | Total                   |
|--------|-----------------------------------------------------|----------------------|----------|-------------------------|
|        | Description                                         | Unit Rate Unit       | Quantity | Total                   |
| 57     | Project Management/Administration<br>Personnel      |                      |          |                         |
|        | Project Manager<br>Clerk                            | \$90 hr.<br>\$45 hr. | 60<br>40 | \$5,40<br>\$1,80        |
|        | <u>Equipment</u><br>Office Trailer, Supplies, Misc. | \$375 week           | 1        | \$37                    |
|        | <u>Expenses</u><br>Per Diem                         | \$175 man-day        | 12       | \$2,10                  |
|        | Weekly Rate for Project Management/Ad               | ministration         |          | \$9,68                  |
| 58     | Health and Safety<br>Personnel                      |                      |          |                         |
|        | Health & Safety Officer                             | \$85 hr.             | 60       | \$5,10                  |
|        | <u>Equipment</u><br>Air Monitoring Equipment        | \$500 week           | 1        | \$50                    |
|        | Site Truck                                          | \$75 day             | 6        | \$45                    |
|        | PPE                                                 | \$50 man-day         | 6        | \$30                    |
|        | <u>Expenses</u><br>Per Diem                         | \$175 man-day        | 6        | \$1,05                  |
|        | Laboratory Services<br>Organics/Particulates        | \$500 each           | 1        | \$50                    |
|        | Weekly Rate for Health and Safety                   |                      |          | \$7,90                  |
| 59     | <b>Security</b><br>Personnel                        |                      |          |                         |
|        | Guard<br>Weekly Rate for Security                   | \$50 hr.             | 60       | \$3,00<br><b>\$3,00</b> |
| 60     | Construction Dust/Erosion Control                   | \$1,000 week         | 1        | \$1,00                  |
| 61     | Traffic Control                                     | \$2,500 week         | 1        | \$2,50                  |
|        |                                                     |                      |          |                         |

# Table C-3Feasibility StudyPreliminary Cost Estimate5-yr Review and Landfill Gas Monitoring CostsKenilworth Park Landfill

## Alternative #1 - 5 yr. review

| 5 year Review - estimated cost \$30,000<br>Annual cost of 5 year review (Using 5% Discount Rate)                                                                              | \$5,430                         |                    |            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------|------------|
| Alternative #1<br>Total 30 Yrs O & M Present Worth (Using 5% Discount Rate)                                                                                                   | \$83,500                        | years:<br>D. Rate: | 30<br>0.05 |
| Alternative #2 - 5 yr. review; perimeter landfill gas monitoring for 3 ev                                                                                                     | rents                           |                    |            |
| 5 year Review - estimated cost \$30,000<br>Annual cost of 5 year review (Using 5% Discount Rate)                                                                              | \$5,430                         |                    |            |
| Per event cost of landfill gas monitoring<br>Present worth of landfill gas monitoring (3 events over 3 years)<br>Capital cost - 15 landfill gas monitoring wells @ \$1500/ea. | \$5,000<br>\$13,600<br>\$22,500 | years:<br>D. Rate: | 3<br>0.05  |
| Alternative #2<br>Total 30 Yrs O & M Present Worth (Using 5% Discount Rate)                                                                                                   | \$119,600                       | years:<br>D. Rate: | 30<br>0.05 |
| Alternatives #3a & #3b - 5 yr. review; perimeter landfill gas monitoring                                                                                                      | for 6 events                    |                    |            |
| 5 year Review - estimated cost \$30,000<br>Annual cost of 5 year review (Using 5% Discount Rate)                                                                              | \$5,430                         |                    |            |
| Per event cost of landfill gas monitoring<br>Present worth of landfill gas monitoring (6 events over 6 years)<br>Capital cost - 15 landfill gas monitoring wells @ \$1500/ea. | \$5,000<br>\$25,400<br>\$22,500 | years:<br>D. Rate: | 6<br>0.05  |
| Alternatives #3b and #3b<br>Total 30 Yrs O & M Present Worth (Using 5% Discount Rate)                                                                                         | \$131,400                       | years:<br>D. Rate: | 30<br>0.05 |

## Table C-4Feasibility StudyPreliminary Cost EstimateAlternative 2: Minor Grading/Filling and Institutional ControlsKenilworth Park Landfill

| Reference # | ltem                                                |             | Unit     | Quantity | Co        | Cost Rounded  |                   |
|-------------|-----------------------------------------------------|-------------|----------|----------|-----------|---------------|-------------------|
|             |                                                     | Unit Cost   |          |          | Cost      | to \$100      |                   |
|             | Contractor Mobilization/Demobilization              | \$10,000.00 | Lump Sum | 1        | \$10,000  | \$10,000      |                   |
| 57          | Project Management/Administration                   | \$9,680.00  | Week     | 4        | \$38,720  | \$38,700      |                   |
| 59          | Security                                            | \$3,000.00  | Week     | 4        | \$12,000  | \$12,000      |                   |
| 4           | Common fill                                         | \$17.25     | су       | 9841     | \$169,763 | \$169,800     |                   |
| 6           | Topsoil                                             | \$26.50     | cy       | 6857     | \$181,702 | \$181,700     |                   |
| 11          | Compacted crushed stone                             | \$56.50     | cy       | 4679     | \$264,345 | \$264,300 re- | grade parking are |
| 12          | Hand Seeding                                        | \$21.50     | MŚF      | 370      | \$7,961   | \$8,000       |                   |
| 13          | Grading Depressions at KPS                          | \$2.30      | SY       | 11616    | \$26,717  | \$26,700      |                   |
|             | Subtotal Direct Capital Costs                       |             |          |          |           | \$711,200     |                   |
|             | Contingency (15%)                                   |             |          |          |           | \$106,700     |                   |
|             | Total Direct Capital Costs (rounded to \$100)       |             |          |          |           | \$818,000     |                   |
|             | Indirect Capital Costs                              |             |          |          |           |               |                   |
|             | Legal Fees and License/Permit Costs (2%)            |             |          |          |           | \$16,400      |                   |
|             | Engineering and Design (3%)                         |             |          |          |           | \$24,500      |                   |
|             | Contractor Reporting Requirements (2%)              |             |          |          |           | \$16,400      |                   |
|             | Construction Oversight (4%)                         |             |          |          |           | \$32,700      |                   |
|             | Perimeter landfill gas Monitoring and 5 year review |             |          |          |           | \$119,600     |                   |
|             | Total Indirect Capital Costs (Rounded to \$100)     |             |          |          |           | \$209,600     |                   |

| Total Present Worth Cost for Alternative 2 (Rounded to \$1,000) | \$1,028,000 |
|-----------------------------------------------------------------|-------------|
|-----------------------------------------------------------------|-------------|

Notes:

Areas and Volumes based on Figure 4-1 of the Feasibility Study

#### Table C-5 Feasibility Study Preliminary Cost Estimate Alternative 3a - 12" Soil Cap and Select Excavation/Backfill and Institutional Controls Kenilworth Park Landfill

|             |                                                            |             |          |          | Cost Rounded |             | Note         |
|-------------|------------------------------------------------------------|-------------|----------|----------|--------------|-------------|--------------|
| Reference # | Item                                                       | Unit Cost   | Unit     | Quantity | Cost         | to \$100    |              |
|             | Contractor Mobilization/Demobilization                     | \$50,000.00 | Lump Sum | 1        | \$50,000     | \$50,000    |              |
| 57          | Project Management/Administration                          | \$9,680.00  | Week     | 100      | \$968,000    | \$968,000   |              |
| 58          | Health and Safety                                          | \$7,900.00  | Week     | 100      | \$790,000    | \$790,000   |              |
| 59          | Security                                                   | \$3,000.00  | Week     | 100      | \$300,000    | \$300,000   |              |
| 60          | Construction Dust/Erosion Control                          | \$1,000.00  | Week     | 100      | \$100,000    | \$100,000   |              |
| 61          | Traffic Control                                            | \$2,500.00  | Week     | 100      | \$250,000    | \$250,000   |              |
| 5           | Sub Grade prep at KPS                                      | \$0.72      | sy       | 198246   | \$142,737    | \$142,700   |              |
| 4           | Common fill                                                | \$17.25     | су       | 88316    | \$1,523,457  | \$1,523,500 |              |
| 6           | Topsoil                                                    | \$26.50     | cy       | 88316    | \$2,340,382  | \$2,340,400 |              |
| 7           | Seeding                                                    | \$1,075.00  | acre     | 109      | \$117,694    | \$117,700   |              |
| 9           | Silt Fence                                                 | \$1.16      | LF       | 20400    | \$23,664     | \$23,700    |              |
| 10          | Replacement roadway/ P. Lots                               | \$59.00     | LF       | 11217    | \$661,783    | \$661,800   |              |
| 2           | Selective excavation of cover soils                        | \$3.96      | су       | 13569    | \$53,735     | \$53,700    |              |
| 3           | 4.0 cy Wheeled Front End Loader for loading excavated soil | \$0.71      | cy       | 13569    | \$9,634      | \$9,600     |              |
| 15          | Common fill for selective excavations                      | \$21.56     | cy       | 6785     | \$146,295    | \$146,300   |              |
| 16          | Topsoil for selective excavations                          | \$33.13     | cy       | 6785     | \$224,743    | \$224,700   |              |
| 12          | Hand Seeding                                               | \$21.50     | MSF      | 366      | \$7,869      | \$7,900     |              |
| 21          | Disposal as ADC at Subtitle-D Landfill (within 10 miles)   | \$25.00     | ton      | 20354    | \$508,853    | \$508,900   | use as cover |
| 22          | Transportation (Hauling)                                   | \$13.00     | су       | 13569    | \$176,402    | \$176,400   |              |
| 14          | Riparian Corridor Restoration                              | \$50,000.00 | acre     | 2.23     | \$111,692    | \$111,700   |              |
|             | Subtotal Direct Capital Costs                              |             |          |          |              | \$8,507,000 |              |
|             | Contingency (15%)                                          |             |          |          |              | \$1,276,100 |              |
|             | Total Direct Capital Costs (rounded to \$100)              |             |          |          |              | \$9,783,000 |              |
|             | Indirect Capital Costs                                     |             |          |          |              |             |              |
|             | Legal Fees and License/Permit Costs (1%)                   |             |          |          |              | \$97,800    |              |
|             | Engineering and Design (2%)                                |             |          |          |              | \$195,700   |              |
|             | Contractor Reporting Requirements (2%)                     |             |          |          |              | \$195,700   |              |
|             | Construction Oversight (4%)                                |             |          |          |              | \$391,300   |              |
|             | Perimeter landfill gas Monitoring and 5 year review        |             |          |          |              | \$131,400   |              |
|             | Total Indirect Capital Costs (Rounded to \$100)            |             |          |          |              | \$1,011,900 |              |

Total Present Worth Cost for Alternative 3a (Rounded to \$1,000) \$10,795,000

Notes:

Areas and Volume based on Figures 4-3 and 4-4 of the Feasibility Study

#### Table C-6 Feasibility Study Preliminary Cost Estimate Alternative 3b - 24" Soil Cap and Select Excavation/Backfill and Institutional Controls Kenilworth Park Landfill

|             |                                                                |             |          |          | Cost Rounded |              | Note         |
|-------------|----------------------------------------------------------------|-------------|----------|----------|--------------|--------------|--------------|
| Reference # | Item                                                           | Unit Cost   | Unit     | Quantity | Cost         | to \$100     |              |
|             | Contractor Mobilization/Demobilization                         |             | Lump Sum | 1        | \$50,000     | \$50,000     |              |
| 57          | Project Management/Administration                              | \$9,680.00  | Week     | 100      | \$968,000    | \$968,000    |              |
| 58          | Health and Safety                                              | \$7,900.00  | Week     | 100      | \$790,000    | \$790,000    |              |
| 59          | Security                                                       | \$3,000.00  | Week     | 100      | \$300,000    | \$300,000    |              |
| 60          | Construction Dust/Erosion Control                              | \$1,000.00  | Week     | 100      | \$100,000    | \$100,000    |              |
| 61          | Traffic Control                                                | \$2,500.00  | Week     | 100      | \$250,000    | \$250,000    |              |
| 5           | Sub Grade prep at KPS                                          | \$0.72      | sy       | 198246   | \$142,737    | \$142,700    |              |
| 4           | Common fill (volume increased by 15% for compaction)           | \$17.25     | су       | 304691   | \$5,255,925  | \$5,255,900  |              |
| 6           | Topsoil                                                        | \$26.50     | су       | 88316    | \$2,340,382  | \$2,340,400  |              |
| 7           | Seeding                                                        | \$1,075.00  | acre     | 109      | \$117,694    | \$117,700    |              |
| 9           | Silt Fence                                                     | \$1.16      | LF       | 20400    | \$23,664     | \$23,700     |              |
| 10          | Replacement roadway/ P. Lots                                   | \$59.00     | LF       | 11217    | \$661,783    | \$661,800    |              |
| 2           | Selective excavation of cover soils                            | \$3.96      | су       | 27139    | \$107,470    | \$107,500    |              |
| 3           | 4.0 cy Wheeled Front End Loader for loading excavated soil     | \$0.71      | cy       | 27139    | \$19,269     | \$19,300     |              |
| 15          | Common fill for selective excavations                          | \$21.56     | cy       | 20354    | \$438,886    | \$438,900    |              |
| 16          | Topsoil for selective excavations                              | \$33.13     | cy       | 6785     | \$224,743    | \$224,700    |              |
| 12          | Hand Seeding                                                   | \$21.50     | MŚF      | 366      | \$7,869      | \$7,900      |              |
| 21          | Disposal as ADC at Subtitle-D Landfill (within 10 miles)       | \$25.00     | ton      | 40708    | \$1,017,706  | \$1,017,700  | use as cover |
| 22          | Transportation (Hauling)                                       | \$13.00     | су       | 27139    | \$352,805    | \$352,800    |              |
| 14          | Riparian Corridor Restoration                                  | \$50,000.00 | acre     | 2.23     | \$111,692    | \$111,700    |              |
| 17          | Compaction - 6 inch lifts                                      | \$1.31      | ecy      | 264949   | \$347,083    | \$347,100    |              |
| 18          | Water Truck (assume 50% of fill requires water for compaction) | \$2.15      | ecy      | 132474   | \$284,820    | \$284,800    |              |
| 19          | Biaxial geogrid for subgrade reinforcement under play fields   | \$3.50      | SY       | 40000    | \$140,000    | \$140,000    |              |
|             | Subtotal Direct Capital Costs                                  |             |          |          |              | \$14,052,600 |              |
|             | Contingency (15%)                                              |             |          |          |              | \$2,107,900  |              |
|             | Total Direct Capital Costs (rounded to \$100)                  |             |          |          |              | \$16,161,000 |              |
|             | Indirect Capital Costs                                         |             |          |          |              |              |              |
|             | Legal Fees and License/Permit Costs (1%)                       |             |          |          |              | \$161,600    |              |
|             | Engineering and Design (2%)                                    |             |          |          |              | \$323,200    |              |
|             | Contractor Reporting Requirements (2%)                         |             |          |          |              | \$323,200    |              |
|             | Construction Oversight (4%)                                    |             |          |          |              | \$646,400    |              |
|             | Perimeter landfill gas Monitoring and 5 year review            |             |          |          |              | \$131,400    |              |
|             | Total Indirect Capital Costs (Rounded to \$100)                |             |          |          |              | \$1,585,800  |              |
|             | Total Present Worth Cost for Alternative 3b (Rounded to \$1,00 | 0)          |          |          |              | \$17,747,000 |              |

Notes:

Areas and Volume based on Figures 4-3 and 4-4 of the Feasibility Study

#### Table C-7

#### Feasibility Study Preliminary Cost Estimate

#### Alternative 4: Removal of New Fill, Previous Soil Cover, Muncipal Solid Waste and Ash, and Institutional Controls Kenilworth Park Landfill

|             |                                                            |              |          |          |               | ost Rounded   | Note           |
|-------------|------------------------------------------------------------|--------------|----------|----------|---------------|---------------|----------------|
| Reference # | Item                                                       |              | Unit     | Quantity | Cost          | to \$100      |                |
|             | Contractor Mobilization/Demobilization                     | \$150,000.00 | Lump Sum | 1        | \$150,000     | \$150,000     |                |
| 57          | Project Management/Administration                          | \$9,680.00   | Week     | 150      | \$1,452,000   | \$1,452,000   |                |
| 58          | Health and Safety                                          | \$7,900.00   | Week     | 150      | \$1,185,000   | \$1,185,000   |                |
| 59          | Security                                                   | \$3,000.00   | Week     | 150      | \$450,000     | \$450,000     |                |
| 60          | Construction Dust/Erosion Control                          | \$1,000.00   | Week     | 150      | \$150,000     | \$150,000     |                |
| 61          | Traffic Control                                            | \$2,500.00   | Week     | 150      | \$375,000     | \$375,000     |                |
| 1           | Bulk Cover Soil, New Fill and Waste Excavation             | \$1.91       | су       | 4000000  | \$7,639,999   | \$7,640,000   |                |
| 4           | Common fill for slope                                      | \$17.25      | су       | 37939    | \$654,447     | \$654,400     |                |
| 6           | Topsoil for slope                                          | \$26.50      | су       | 5420     | \$143,626     | \$143,600     |                |
| 7           | Seeding slope                                              | \$1,075.00   | acre     | 7        | \$7,223       | \$7,200       |                |
| 8           | Tidal Marsh Restoration                                    | \$7,500.00   | acre     | 138      | \$1,035,544   | \$1,035,500   |                |
| 9           | Silt Fence                                                 | \$1.16       | LF       | 18000    | \$20,880      | \$20,900      |                |
| 19          | Disposal as ADC at Subtitle-D Landfill (within 10 miles)   | \$25.00      | ton      | 1689936  | \$42,248,392  | \$42,248,400  | use as cover s |
| 20          | Disposal at Subtitle-D Landfill (within 10 miles)          | \$90.00      | ton      | 2552158  | \$229,694,200 | \$229,694,200 | solid was      |
| 21          | Transportation (Hauling)                                   | \$13.00      | су       | 4000000  | \$51,999,994  | \$52,000,000  |                |
| 2           | Selective excavation of cover soils                        | \$3.96       | су       | 26459    | \$104,776     | \$0           |                |
| 3           | 4.0 cy Wheeled Front End Loader for loading excavated soil | \$0.71       | су       | 26459    | \$18,786      | \$18,800      |                |
| 4           | Common fill for cover soil                                 | \$17.25      | cy       | 19844    | \$342,309     | \$342,300     |                |
| 6           | Topsoil for cover soil                                     | \$26.50      | су       | 6615     | \$175,289     | \$175,300     |                |
| 12          | Hand Seeding                                               | \$21.50      | MSF      | 357      | \$7,680       | \$7,700       |                |
| 19          | Disposal as ADC at Subtitle-D Landfill (within 10 miles)   | \$25.00      | ton      | 39688    | \$992,200     | \$992,200     | use as cover s |
| 21          | Transportation (Hauling)                                   | \$13.00      | су       | 26459    | \$343,963     | \$344,000     |                |
|             | Subtotal Direct Capital Costs                              |              |          |          |               | \$339,086,500 |                |
|             | Contingency (15%)                                          |              |          |          |               | \$50,863,000  |                |
|             | Total Direct Capital Costs (rounded to \$100)              |              |          |          |               | \$389,950,000 |                |
|             | Indirect Capital Costs                                     |              |          |          |               |               |                |
|             | Legal Fees and License/Permit Costs (1%)                   |              |          |          |               | \$3,899,500   |                |
|             | Engineering and Design (2%)                                |              |          |          |               | \$7,799,000   |                |
|             | Contractor Reporting Requirements (2%)                     |              |          |          |               | \$7,799,000   |                |
|             | Construction Oversight (4%)                                |              |          |          |               | \$15,598,000  |                |
|             | Total Indirect Capital Costs (Rounded to \$100)            |              |          |          |               | \$35,095,500  |                |

Total Present Worth Cost for Alternative 4 (Rounded to \$1,000,000)

\$425,000,000

Notes: Volumes based on cross-sections from the Remedial Investigations prepared by E&E